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SUMMARY 

The phenomenon of noise generation by supersonic jets is reviewed in a comparison of previous 
theoretical and experimental investigations. It is  shown that three fundamental mechanisms 
exist, which are defined as turbulence-shear noise, Mach wave radiation, and shock-noise. 
The significance of each type of noise i s  evaluated, wi th reference to the nature of the jet- 
flow structure and particular attention i s  paid to the acoustic near field. 

At the present time there i s  no general method for the prediction of the near field noise of 
either subsonic or supersonic jets. An appropriate expression i s  presented, and a series of 
experiments proposed, by which i t s  empirical coefficients can be determined. These experi- 
ments would eventually lead to the establishment of scaling laws, enabling the expression to 
be used to compute the near field sound pressure contours of any supersonic iet of known 
configuration. 

i 

iii 



-SUMMARY 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST OF SYMBOLS 

1.0 1NTRODUCTION 

TABLE OF CONTENTS 

Page Number 

2 .o THE STRUCTURE OF AXISYMMETRIC JET EXHAUSTS 

2.1 Introduction 

2.2 Jet Mixing 

2.3 

2.4 Definition of Shock Geometry 

2.5 

The Development of a Shock Pattern in Supersonic Flow 

Mach Number Contours in Exhaust Flow 

3 .O GENERATION OF SOUND BY TURBULENT JETS 

3.1 

3.1.1 

3.1.2 

3.1 .3 

3.2 

3.2.1 

3.2.2 

3.2.3 

The Noise of Subsonic Jets 

Lighthill's Theory 

Extension of Lighthill's Analysis to the Near Field 

Correlation of Theory and Experiment for Subsonic 
Jet Noise 

The Noise of Supersonic Jets 

Ffowcs Williams' Extension of Lighthill's Theory to 
Supersonic Flow 

The Near Field of Supersonic Jets 

Correlation of Theory and Experiment for Supersonic 
Jet Noise 

Shock Noise 

iii 

V 

vii 

xi 

1 

6 

6 

7 

12 

14 

17 

23 

23 

23 

27 

31 

36 

37 

43 

45 

48 



TABLE OF CONTENTS (Continued) 

Page Number 

4 .O EXPERIMENTS TO ESTABLISH METHODS FOR THE PREDICTION 
OF THE NEAR NOISE FIELD OF SUPERSONIC JETS 

5 .O CONCLUDING REMARKS 

REFERENCES 

APPENDIX A SUPERSONK JET FLOW EQUATIONS 

APPENDIX B DERIVATION OF THE SOUND FIELD OF CONVECTED 
LATERAL QUADRUPOLES IN TERMS OF TOTAL SOUND 
POWER 

APPENDIX C INITIAL EXPERIMENTS TO MEASURE THE NEAR NOISE 
FIELD OF A SUPERSONIC JET 

5 0 -  

58 

59 

63 

67 

69 

a 

Vi 



LIST OF FIGURES 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

Figure 11 

Figure 12 

Figure 13 

Figure 14 

Shadowgraph photograph of the Mach Wave Field of a 
Supersonic Jet, from Unpublished Work at NASA Langley 
Research Center. 

Shock Free Supersonic Flow. 

Calculated Flow Contours for Constant Density 
Axisymmetric Jet From Reference 17. 

Variation of Core Length with Exit Mach Number. 
(After Eldred eta1 . Reference 17). 

Variation of !/b with Exit Mach Number (From Eldred 
eta1 . Reference 17). 

Axial Velocity Decay for Various Exit Mach Numbers 
Calculated by Method of Reference 17. 

Jet Spreading Curve Corresponding to Figure 6. 

Length of Supersonic Core Versus Exit Mach Number. 

Development of Shock Patterns. 

Badly Expanded Supersonic Jet Flow. 

Development of Shock Pattern with Nozzle Exit Pressure, 
Design Mach No. = 2.47. From top to bottom; p 
0.497, 0.747, 1.0, 1.53, 1.98. 

- 
d p o  - 

Width of Primary Cell; Empirical Relationships from Love 
etal .  (Reference 31). 

Effect of Pressure Ratio on Distance to First Mach Disc or 
Intersection Point for Ideally Expanded Jet, from Love etal .  
(Reference 31). 

Variation of Mach Disc Diameter With Pressure Ratio and 
Design Mach Number for Ideally Expanded Nozzle, from 
Love etal. (Reference 31). 

Page 

73 

74 

74 

75 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

vi i 



LIST OF FIGURES (Continued) 

Figure 15 

Figure 16 

Figure 17 

Figure 18 

Figure 19 

Figure 20 

Figure 21a 

Figure 21b 

Similarity of Radial Velocity Profiles in Jet Mixing Region. 

Similarity of Radial Velocity and Temperature Profiles in 
Subsonic Flow of Rocket Exhaust. After Anderson and 
Johns (Reference 20) 

Exponent of Downstream Center1 ine Pressure Decay. 

Exponent of Downstream Centerline Temperature Decay. 

Calculated Centerline Mach Number Decay 

Axial Variation of b/rE and Mach Number Profiles for 
ME = 2.0, t = 5fJet. 

Relationship Between Cartesian and Polar Coordinates. 

Near Field Amplification due to x, , x3 Lateral 
Quadrupoles (k r = 0.25). 

Figure 22 Overall Jet Sound Power Per Unit Nozzle Area Versus 
Exhaust Velocity, From Reference 37. 

Figure 23 Jet Noise Directivity. 

Figure 24 Power Spectral Density of Jet Noise. 

Figure 25 Location of Maximum Sound Pressure Level in 1/3 Octave 
Frequency Bands as Function of Modified Strouhal Number, 
From Reference 17. 

Figure 26 Modification of Apparent Spectrum by Near Field Effects. 

Figure 27 Near Field Noise Pattern of a Jet and a Rocket, SPL in 
Decibels re: 0.0002 dynes/cms*. 

Figure 28 Effects of Eddy Convection on Emission Volume and 
Emission Time Differences (Reference 36). 

Page 

85 - 

86 

87 

87 

88 

89 

90 

90 

91 

92 

93 

94 

94 

95 

96 

viii 



LlST OF FIGURES (Continued) 

a Figure 29 Typical Cross-Covariance given by Equation 4.5. 

Figure 30 Coordinate System for Discrete Source Acoustic Model 
of Jet Stream. 

Figure 31 Schematic of Proposed Rig for Near Field Correlation 
Experiments. 

Page 

97 

97 

9% 

ix 



LIST OF SYMBOLS 

Only those symbols which are widely used are listed below. Other symbols, or different 
- meanings to those given below, are used only locally and are defined where they f i r s t  occur. 

Roman Symbols 

a 

M 

M 
- 

A, 
P 

P 

PT 

P 

r 

r 

r 

N 

r 

speed of sound 

radius of laminar core 

mixing width parameter 

far field pressure autocovariance 

frequency, Hertz 

far field directivity function 

near field directivity function 

near field directivity function 

acoustic intensity 

wave number = 2 ITA 
cotrelation length; typical eddy dimension 

flow Mach number 

Mach number relative to ambient speed of sound 

eddy convection Mach number 

mean static pressure 

pressure fluctuation (acoustic pressure) 

total pressure 

sound power 

radius from jet centerline 

displacement of f ield point from sound source = 

magnitude of 2 

radial coordinate measured from nozzle center (equation 4.10) 

x - y - -  

xi 



r. 
I 

r. 
I 

Rij ke 

t 

t 

t 

T 

T.. 
'J - 

T2 

u, u. 
I 

U 

v, v. 
I 

V 

V 

V 
e 

X 

1 X 

X 
cv 

X 
S 

t 
X 

Y 
N 

component of along x, axis 

distance from i-th source to observer (equation 4.10) 

turbulent stress correlation tensor 

time 

ratio of total temperature to ambient temperature T /T 
retarded time ( t  - r/ao) 

temperature 

turbulent stress tensor 

T o  

mean square of T.. 
'I 

velocity fluctuation 

mean velocity ( in  x-direction parallel to iet axis) 

vel oc i ty fluctuation 

mean ve loc i ty 

volume 

eddy volume 

length of primary cell in shock pattern 

sound power spectral density 

axial distance from iet nozzle 

Cartesian ax is  

position vector of point in acoustic field 

axial location of sonic point 

axial location of laminar core t ip 

position vector of point in turbulent flow 

x i i  

x 



Greek Symbols 

Y 

6.. 
'J 

A 

4 

e 
'I 

eM 

x 
x 
N 

A S  N 

P 

U 

T I  7" 

T r 

Subscripts 

m 

far field directionality factor 

near field directionality factor 

ratio of specific heats 

Kronecker delta 

incremental factor (e.g., At, A r )  

separation vector 

mixing width parameter (r - a/b ) 

angle to iet axis 

Mach angle 

wavelength 

moving axis separation vector 

area vector normal to 0M direction 

density 

time var jab I e 

time delay, retarded time increment 

turbulent shear stress 

polar coordinate, phase angle 

phase angle 

radian frequency 

perta in ing to eddy convect ion 

nozzle exit plane conditions 

far field 

tensor and vector notation 

maximum (iet center1 ine values) 

xiii 



N 

r 

T 

0 

0.5 

1 8  2 8  

near field 

pertaining to radius r 

total conditions 

ambient conditions 

at  radius specified by U, = 

Cartesian subscripts. 

0.5 Um 

xiv 

a 



1 .o INTRODUCTION 

The rocket engine has the unfortunate side-effect of being a singularly powerful 
continuous source of poise. Apart from being an obvious physiological problem, 
this noise i s  sufficiently intense to constitute a potential hazard to structural 
components in the close vicinity of the exhaust stream. For this reason, there i s  
a clear need for both understanding and control of the noise generation process. 
The noise i s  aerodynamic in origin, and results from the powerful shearing actions 
which take place as the high velocity exhaust gases mix with the surrounding 
atmosphere. Although Lighthill (References 1 and 2) established an analytical 
description of the fundamentals of aerodynamic noise generation as far back as 
1952, a theoretical quantitative evaluation of the noise produced by a jet with 
known nozzle flow conditions s t i l l  remains beyond reach, in spite of very con- 
siderable efforts by many investigators. The primary reason for this i s  the lack 
of understanding of the turbulence generation mechanisms in a iet flow. 

However, by judicious use of available experimental tools, much can and has 
been done to close the gap between theory and experiment. This report reviews 
previous work, wi th particular emphasis on the near-noise field, and indicates 
maior problem areas which are apparent. A series of experiments are suggested 
which should f i l l  some of the gaps in present knowledge and assist the continuing 
attempts to develop a method by which the sound field of a supersonic iet can be 
completely predicted wi th  reasonable confidence. 

The noise field of a iet can be divided into three fairly wel l  defined regions. 
These are: 

a) The far field (or radiation field) which encompasses points that are 
sufficiently far from the iet for the noise to be considered as being 
radiated from a single point; 

The mid-field or (geometric near field) where the geometry of the 
iet flow becomes important because an observer hears sound arriving 
from an extended source region; and, 

b) 

c) The near field (or induction near field) whose boundaries are 
essentially a function of frequency, being confined to within a 
wavelength or so of the iet boundary, where hydrodynamic, 
non-propagating pressure fluctuations amplify the sound levels. 

The near field discussed in this report includes regions (b) and (c). 

In general, to define the far f ield sound pressure levels of a jet, it i s  necessary to 
describe the noise source in terms of i t s  overall sound power, i t s  frequency spectrur 
and i t s  directionality. 
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Lighthill (Reference 1) showed that at low exhaust Mach Numbers, the overall 
sound power i s  proportional to the eighth power of the velocity. Since the 
mechanical power of the jet i s  proportional to the cube of the velocity, this law 
represents a net acoustic efficiency which i s  proportional to the fifth power. It 
has been found that this relationship i s  true up to jet velocities approaching twice 
the ambient speed of sound and, numerically, the efficiency i s  about lom4 fit 
where i s  the exit velocity divided by the ambient sound speed. At velocities 
higher than GE = 2, which represents a typical value for turbojet engines, the 
efficiency begins to fall'off rapidly and for GE > 3 it reaches a constant value 
of approximately 0.006. This reduction i s  clearly shown in Figure 22 in which 
some typical experimental data show the variation of overall acoustic power with 
jet velocity. Since the large rocket boosters of today generate power of the order 
of 1O1O watts, this s t i l l  represents a formidable amount of noise energy, despite 
i t s  apparently low numerical value. The reduction in acoustic efficiency at high 
Mach Numbers i s  explained theoretically by an extension of Lighthill's analysis 
by Ffowcs Williams (Reference 3) although, as wi l l  be seen later, the explanations 
put forward s t i l l  await experimental confirmation. 

* 

The manner in which the sound energy i s  distributed through the frequency spectrum 
i s  mainly influenced by the geometry of the mixing process. The thickness of the 
annular turbulent mixing layer wherein the sound i s  generated, increases almost 
linearly wi th  distance downstream, from zero near the tip of the nozzle until the 
laminar flow core, which it surrounds, disappears. From this point, the flow i s  
completely turbulent and the flow boundaries begin to expand more rapidly. As 
the geometry suggests, small, high velocity turbulent eddies are created near the 
nozzle which generate correspondingly high frequency sound. Further downstream, 
mean velocities are lower, eddies become larger and associated acoustic frequencies 
are typically lower. This fact has been confirmed for subsonic jets both by direct 
hot-wire measurements of the turbulent velocity fluctuations (References 4 and 5) 
and by sound pressure measurements near the jet boundary (for example, References 
6, 7, and 8). Mainly due to the fact that the mean velocity varies l i t t le  in the 
init ial mixing region (adjacent to the core) the sound power generated per unit iet 
length i s  roughly constant, in that region, since the rms velocity fluctuations 
vary approximately as the mean velocity. Downstream of the core tip both mean 
velocity and the sound power per unit length decay rapidly. The net result of 
these variations in subsonic jets i s  to generate a power spectrum which exhibits a 
single peak around the Strouhal Number fdE/UE = 0.25, and falls away at 
approximately 6 dB per octave on either side of this peak. 

The sound power spectra of highly supersonic rockets, on the other hand show no 
such tendency to collapse on the basis of this simple Strouhal Number. The peak 
freque.ncy has been found experimentally (References 9 and 10) to be almost inde- 
pendent of velocity and to l ie within the vicinity of ao/dE, which i s  much lower 
than would be given by the Strouhal Number relationship above. Also, practically 
a l l  measurements of rocket noise (e.g., References 10, 11 , and 12) strongly indicate 
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that the maior sound producing region i s  well downstream of the nozzle, around 
the point where the flow becomes subsonic (i .e., the flow Mach Number, M, 
approaches unity; the acoustic Mach Number a, the ratio of the flow velocity 
to the ambient speed of sound, s t i l l  remains around 3).  Now these two facts are 
in complete disagreement with the predictions of the theory which accounts for 
the constant acoustic efficiency at high Mach Numbers. 

This theory suggests that supersonically convected eddies radiate intense sound in 
a highly directional peak, a condition which has become known as Mach wave 
emission Theoretically, Mach wave frequencies certainly tend to become inde- 
pendent of velocity, but the frequency range would be expected to extend to much 
higher l imits than those observed. Furthermore, they originate from regions of high 
velocity, that is, from the initial mixing region. This discrepancy represents the 
biggest dilemma in the study of rocket noise which must be solved before further 
progress can be made. 
by shadow photography, and Figure 1 i s  a typical example. Such pictures reveal 
what appear to be high frequency wave trains emanating from the supersonic regions 
of the flow in an essentially uniform direction. These waves also seem to be of 
greater intensity than radiation from other parts of the flow. The reason why this 
high frequency energy does not dominate the measured spectra remains a mystery, 
unless indeed i t  i s  outside the range of microphone response. 

Theoretical solutions for the directional characteristics of iet noise show good 
qualitative agreement wi th  experiment, showing that sound i s  predominantly radiated 
at acute angles to the flow direction. This i s  primarily the result of eddy convection 
effects and +he quadrupole nature of the sound sources. Attempts to quantify the 
directional properties, however, have so far been relatively unsuccessful. It i s  
known that the higher frequencies radiate at greater angles to the flow direction, 
the total range being from 20° to 70°, within the usual eight octave band frequency 
range, for turbojet engines. Rocket engines, however, exhibit peaks at consider- 
ably greater angles and once again this might be expected of Mach wave emission; 
a further point favoring this mecahnism . 

To date, the existence of Mach waves has only been verified 

The discussion so far has indicated that knowledge of the far f ield noise of subsonic 
and sonic jets is substantial, and indeed, current prediction techniques based on a 
combination of analytical and empirical techniques are adequate to define these 
noise fields with sufficient accuracy for engineering purposes. In the case of far 
field rocket noise it has not proved possible to coordinate theoretical and experi- 
mental results, and methods which have been developed for prediction purposes are 
completely empirical. Such prediction is made difficult because of the complex 
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nature of the exhaust flow, which unlike that of a turbojet, i s  composed of a very 
different gas to that of the atmosphere, i s  at a very high temperature, and i s  
characterized by a complex standing structure of compression, expansion and shock 
waves. It has three basic noise generation processes, as opposed to one; turbulence 
noise, similar to that of turbojets, originating from subsonic flow regions, Mach 
Wave emission from the supersonic turbulent flow and shock noise caused by inter- 
actions between the turbulence and the standing shocks. Additional complications 
are caused by fuel combustion downstream of the nozzle. It i s  not surprising that 
the theories, derived for relatively well-behaved flows, do not meet the demands 
of such a grotesque flow phenomenon. Potter and Crocker (Reference 13 and 
Wi I hem (Reference 14) have performed extensive surveys of available prediction 
methods and recommended particular expressions for overall sound power and 
frequency spectra. Directivity data from a number of sources are also presented 
for suggested use, but these exhibit so much scatter that i t  i s  doubtful whether they 
could be applied with any confidence at ai l .  It i s  a l l  too regrettable that these 
works give a fairly complete picture of the current state-of-the-art, showing, as 
they do, the large deficiencies in our understanding of the problem. 

- 

It canes as no further surprise that current knowledge of the acoustic near field of 
iet and rocket noise i s  even more sketchy. Because of the practical unimportance 
of this problem prior to the advent of high thrust engines and the consequent concern 
for the durability of structure and personnel exposed to their intense noise, rela- 
tively l i t t le attention has been given to the near field problem. Very few measure- 
ments of the near field noise characteristics are available and even those are 
generally fragmentary and poorly correlated with flow parameters and the associ- 
ated far sound field. Franz (Reference 15) extended Lighthill's work to include 
terms of importance in the near field of turbulence and demonstrated the formidable 
complexity of a theoretical treatment. No attempt has yet been made to apply his 
results to the problem of near field noise prediction, except to demonstrate the 
specific problem of the acoustic loading of a missile structure (Reference 16), 
probably because of the lack of experimental data required both to verify i t  and 
to provide the necessary unknown constants. The information required for near 
f ield noise prediction represents at least an order of magnitude increase over that 
for the far field, since the distribution of noise power, spectra, and directionality 
must be specified along the length of the exhaust stream, together wi th the hydro- 
dynamic induction effects at positions within a few wavelengths of the flow. 

Eldred, et ai. (Reference 17) made a detailed study of some extensive near field 
sound pressure level measurements for a particular iet engine and, by correlating 
these data with corresponding far f ield measurements, were able to deduce the 
axial distributions of the source properties. They found the rather surprising result 
that induction near field effects were negligibly small, in  contrast to Franz's 
theoretical conclusions that such effects could account for amplifications of the 
sound presarre levels of 20 d6 or more. 
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Potter and Crocker found the same results when they applied similar techniques to 
the rocket noise data from Reference 1 1  . However, to make this analysis they 
were forced to make some rather sweeping assumptions concerning the directionality 
of local sound sources, and this conclusion must be questioned. So too must any 
method which attempts to interpret near field sound pressures in  terms of acoustic 
intensity since the dangers of doing so in the possible presence of the reciprocating 
modes of non-propagating standing waves are self-evident. 

This introduction i s  intended to illustrate some of the problems which must be solved 
in order to achieve the understanding required for the prediction of near field noise 
of supersonic jets. At the present time very l itt le i s  known of the basic noise gen- 
eration mechanisms of supersonic flow and we do not yet have the ability to predict 
accurately the noise contours of a simple iet operating i n  a quiescent, free atmo- 
sphere. I t  seems unreasonable to hope, therefore, that we can tackle the real 
problems of the near noise environment of, for example, a large rocket vehicle 
during its init ial launch phase, taking account of the additional problems of 
clustered nozzles, deflected flows, sound reflections and attenuation and flight 
velocity, wi th any substantial degree of confidence. This report, therefore, puts 
emphasis on the very basic problems, associated with a single, supersonic jet with a 
stationary nozzle. 

There i s  a clear need for a great deal more experimental information on the sound 
field of supersonic jets, particularly in  the exhaust velocity range intermediate 
between those high speed turbojets and rockets, a gap of some 5000 ft. per 
second or mote. The main result of this work therefore i s  a recommendation for a 
series of wel l  controlled experiments which i t  i s  hoped w i l l  provide some of this 
information. 

Previous work, which i s  basic to the iet noise generation problem, i s  reviewed i n  
some detail with emphasis on i t s  relation to the near field problem. Attention i s  
confined in  the main to the case of axisymmetric jets exhausting into stationary 
air. Throughout the report, equations taken from previous work have been con- 
verted, where necessary, to a consistent notation i n  order to preserve some 
continuity. 
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2 .o THE STRUCTURE OF AXISYMMETRIC JET EXHAUSTS 

2.1 Introduction 

A subsonic jet, that i s  one in which the Mach number of the exhaust gas i s  less 
than unity a t  the nozzle exit, i s  characterized by two basically different regions. 
The first extends for approximately five nozzle diameters downstream and comprises 
a laminar potential core surrounded by a highly turbulent region which throughout 
the report i s  termed the "init ial mixing region". If the flow upstream of the nozzle 
exit i s  free from disturbances, the flow immediately downstream of the exit i s  also 
laminar. However, a iet exhausting intoquiescentair i s  subjected to an intense 
shearing action at i t s  boundary and within about half a diameter of the nozzle the 
flow in  this shear region i s  fully turbulent. There i s  a continuous exchange of 
momentum between #he potential flow and the ambient air so that the mixing region 
continues to encroach upon the laminar region it surrounds, eventually consuming 
it entirely. At some point in the exhaust,the flow becomes completely turbulent, 
and the boundary of the laminar region i s  approximately conical, giving rise to the 
expressions laminar "core" or "cone" . 
Within the initial mixing region i t  has been shown experimentally that velocity 
profiles are self-similar, a condition which i s  also reached in the second basic 
flow zone, the fully developed mixing region downstream of some point in the 
flow. This point i s  approximately one core length downstream from the core tip, 
and in the intermediate distance, sometimes known as the "transition" region the 
flow passes through a period of adjustment. 

Supersonic jets retain the features of subsonic flow with the main exception that 
they practically al l  contain shocks of some description. A perfectly expanded 
exhaust stream, i .e ., one in which the static pressure i s  uniform, and equal to 
atmospheric,across the nozzle exit plane, w i l l  be completely shock free. The 
flow structure of such an ideal iet i s  shown in Figure 2. The flow bears a strong 
similarity to that of a subsonic jet although an additional, important region can 
be defined, the supersonic core. The stream velocity in the laminar core i s  
essentially constant, and equal to the nozzle velocity, which i s  supersonic. This 
core i s  surrounded by a turbulent mixing zone where the mean stream velocity 
decays with distance from the core boundary, reaching some point at which the 
velocity becomes subsonic. This ''sonic boundary'' i s  approximately conical in  
shape and can be thought of as defining a second core region which has been 
termed the "supersonic core". 

Such a iet i s  very difficult to achieve in practice. Boundary layer growth and the 
three dimensional flow within the nozzle expansion chamber make i t  practically 
impossible to achieve a completely shock-free flow. However, well designed 
nozzles have been manufactured where conditions closely approach the ideal, and 
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shock patterns have been reduced to extremely weak Mach lines in the close 
vicinity of the nozzle. The flow from a well expanded nozzle i s  shown in  
Figure 1 which i s  a shadowgraph of a cold M = 2.2 air jet. It can be seen that 
this flow i s  free of strong shocks,and a criss-cross pattern of very weak compression 
and expansion waves caused by minor irregularities in the nozzle surface are con- 
fined to a small region of the flow close to the nozzle. Figure 2 gives a diagram- 
matic representation of the structure of this shock-free flow, showing five basic 
regions: 

1) A supersonic laminar core; 

2) A supersonic turbulent cone; 

3) 

4) 

5) 

A subsonic turbulent mixing region; 

A fully turbulent transition region; 

A fully developed turbulent region. 
Both completely subsonic 

As yet, there i s  no completely theoretical solution for the geometry of even the 
simplest form of incompressible iet flow structure,and the supersonic turbulent jet 
represents a formidable problem which i s  unlikely to be solved for a long time. 

However, a considerable amount of work has been done which forms a f i rm basis 
for coordination of experimental work,and the combination of theory and experi- 
ment has given reliable semi-empirical methods for the prediction of subsonic iet 
flow at least. 

2.2 Jet Mixing 

The foundations for the study of turbulence were laid down by G. I. Taylor who 
developed a successful statistical theory as early as 1920. Subsequent work by 
himself and Von Karman, among others, further developed this theory but being 
confined to isotropic turbulence, i t  cannot be applied to the study of highly 
sheared, non-isotropic iet flow with any degree of success. The basis for practi- 
cally al l  successful studies of je t  flow was formed by Prandtl in 1935, when he 
developed his semi-empirical mixing length theory. This theory has been critized 
on several grounds, but it provides some very useful insight into the mechanisms 
of iet flow. Prandtl's early work has been developed and extended by such workers 
as Tollmien, Keuthe, and Squire and Trouncer, to cover the case of subsonic, 
incompressible ie t  flow. 
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The equations governing turbulent, axisymmetric iet flow are the continuity 
equation 

d U  
a: P L 2  'T 

where U and V are the mean axial and radial velocitiesrespectively, and the 
simp1 ified Navierdtokes equation, 

d U  
7I-T 

r au au a, 
a x  - 

a r  
+ r p V  - -  r p U  - 

a r  

where i t  i s  assumed that pressure gradients are negligible and viscous stresses can 
be ignored in comparison to the turbulent shear stress T 

combined and integrated, giving the result 
These equations are r. 

L/R a x  p U 2 r d r  - UR Lr a x  p u r  dr  = T ~ R  (2 *3) 
0 0 

R '  where R i s  an effective radius defined by a mean velocity U 

The turbulent shear stress T can be expressed in two ways. The first, R 

= f E  (g) 
R TR 

includes the apparent eddy viscosity E which is an exchange coefficient. The 
second uses Prandtl's mixing length concept which i s  that the turbulent velocity I 
fluctuation 

i .e ., the product of the mixing length and the local velocity gradient. Since 
T i s  primarly the Reynold's Stress p U, 



An additional relationship governing the flow i s  that which expresses the conser- 
vation of momentum along the jet, namely, 

p U2 r dr = constant. (2 06) /m 0 

Equations (2.1) through (2.6) are the basic equations of motion. The differences 
in the work of the various investigators l ie  essentially in the nature of the assump- 
tions made to facilitate their solution. 

For subsonic, incompressible flow the variation of density in the expressions of 
Reynolds stresses can be neglected, thereby considerably simp1 ifying the solution. 
The unknowns remaining are the velocity distribution and the form of the shear 
stresses. In the core region of the jet, experimental data show that mixing region 
velocity profiles are similar along the length of the care and in a fully developed 
region downstream. In the core region the velocity decays approximately expon- 
entially and can be written 

U =  UE e - q2/2 

where q = (r - a)/b, a i s  the potential core radius and b i s  a width parameter. 
Using this velocity profile, and assuming J /b  to be constant in the core region, 
Eldred et al. (Reference 17) use the mixing length representation of the turbulent 
shear stress equation (2.5) to solve the equations for a constant density jet, obtain- 
ing the flow in that region as a function of L/b only. This parameter can only be 
derived experimentally, either by direct velocity correlation measurements in the 
turbulent flow, or by measurement of the flow geometry. 

Downstream from the core tip, there is a transition region, of a length approxi- 
mately equal to that of the core, within which the velocity profile adjusts itself. 
Further downstream of this region the velocity profiles remain similar. Eldred 
e t  al. extended their solution to the downstream region by ignoring this transition 
region and assuming the same type of velocity profile 

U =  U e - q2/2 
m 

where this time q i s  simply r/b, and Um i s  the centerline velocity, which now 
decays with axial distance. The parameter e/b i s  assumed to remain constant and 
equal to i t s  value in the initial mixing region. Figure 3, taken from Reference 17, 
shows the calculated flow contours for a constant density axisymmetric iet  wi th an 
exit Mach number of 1 .O and zero external velocity. 
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However, the incompressible, constant density iet represents the simplest possible 
case, and jets of practical importance for flight propulsion purposes have very hot 
compressible flow. In an attempt to take some account of compressibility effects, 
EIdred et al. retained the assumption of constant mean density to derive effective 
values of Q/b from experimental data and examined the variation of this parameter js  

with iet Mach number. At  low speeds i t s  value was calculated from the turbulence 
data of Laurence (Reference 4) and at high Mach numbers from estimates of the 
potential core dimensions. The variation of the core length i s  shown in Figure 4, 
in which are plotted experimental data from References 4, 18, 19, 20, 21 , 22, 
and 23. It can be seen that core length increases rapidly with Mach number 
implying a reduction in mixing length and consequently turbulent shear stress. The 
calculated equivalent reduction in  ah i s  given in Figure 5. The most significant 
feature of these curves is  the remarkably small effect which temperature appears to 
have upon the core length. At the high Mach numbers, data from very cold jets 
( -  30OoF) and very hot rocket exhaust flow (20OOOF) fa1 I close to the same empirical 
curve xt/d = 3.45 ( 1  +0.38 ME)2. E 

Figure 6 presents a series of curves, calculated according to the downstream solution 
of Reference 17, and again assuming &/b constant, which shows the axial velocity 
decay for exit Mach numbers ranging from M = 0.5 to 3.5 a Superimposed on this 
figure are some experimental points which indicate the magnitude of the errors 
introduced by this simplified approach. The same error i s  also evident in Figure 7, 
where the corresponding iet spreading curves are shown as plots of b against r/dE. 
The measured rate i s  indicated by a curve of rOm5 , the radius at which the mean 
velocity falls to half its value on the centerline. Since b i s  in fact, equal to the 
radius at which the velocity ratio i s  0.606 (in the downstream region), this gives a 
SI ightly pessimistic impression of the discrepancies between the simple theory and 
experiment. 

In Figure 8, the position of the "sonic point" xs/dE, taken from the curves of 
Figure 6, i .e. , the axial location at which the flow becomes subsonic, assuming 
the iet temperature to be equal to ambient, i s  compared with an empirical curve 
obtained by Anderson and Johns (Reference 20). 

The theoretical curve i s  seen to overpredict xs/dE by a large margin. Possible 
reasons for this discrepancy are discussed in detail below, but i f  the experimental 
data are correct, then temperature obviously plays a much more important part in 
the downstream region than it does in the init ial mixing region and the assumption 
that j/b remains constant throughout the iet i s  open to question. 
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More realistic flow models have been analyzed by several workers, notably 
Szablewski (Reference 24), Abramovitch (Reference 25), Kleinstein (Reference 26), 
and Warren (Reference 27). In a compressible fluid flow the density fluctuations 
in the Reynold's stresses are no longer negligible. The same i s  true in flow char- 
acterized by large variations of temperature. Thus, velocity fields and temperature 
fields must be considered simultaneously. As in the case of incompressiMe iet  
studies, great reliance has to be placed on experiment to provide empirical constants. 
Unfortunately, experimental investigations of the turbulence properties of super- 
sonic flow are extremely difficult, because the prime tool for turbulence measure- 
ments, the hot wire anemometer, i s  sensitive to fluctuations of temperature and 
density, as well as velocity. Al l  three quantities fluctuate simultaneously in  
supersonic flow. However, a good deal can be inferred from the mixing character- 
istics of compressible jets and, by making a number of plausible assumptions, incom- 
pressible theory can be extended to derive mean compressible flow properties. 

As a step towards consideration of a complete, compressible flow, Abramovich 
(Reference 25) retained Prandtl's assumption that the mixing length i s  constant 
across the mixing region section and made the further assumption that the velocity, 
density and temperature profiles in the mixing region are similar. These enabled 
him to show that the effect of compressibility on variable density, low subsonic 
flow properties i s  negligible, in fact, experimentally evidenced by the dynamic 
similarity of jets with widely differing temperatures. He also found that the effect 
of compressibility upon the fundamental properties of iet mixing due to velocity up 
to M = 1 .O i s  negligible. Both results have the same implication; a velocity 
increase or a temperature decrease reduces the shear stresses and the mixing zone 
narrows, an experimentally observed fact. 

Abramovitch's results are restricted to the case of moderate temperature difference 
and high subsonic velocity. The basic objection to the use of these methods for 
high temperature, supersonic flow concerns the mixing length concept. In com- 
pressible flow the eddy viscosity of equation (2.4) i s  no longer a measure of the 
transfer phenomena. It must be replaced by a dynamic transfer coefficient 
which accounts for thermodynamic fluctuations. Kleinstein, (Reference 24), 
assumed constancy of this parameter across the mixing width and accounted for 
i t s  axial variations by the relationships 

in the downstream region, where r 0.5 
half the centerline velocity 

i s  the radius at which the mean velocity i s  

in the initial mixing region. 
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By linearizing the equations for conservation of mass, momentum, specie and energy 
into a form of heat conduction equation, he obtained a solution for the centerline 
decay of the iet properties. Kleinstein reached the conclusion that the centerline 
velocity can be nondimensionalized on the basis of the parameter (po) x/dE , 
independent of flow Mach numbers and iet fluid. However, Eggers (Reference 21) I( 

compared this result with available experiments and found poor correlation; the 
general trend was for a reduction in centerline decay with increasing Mach number, 
a finding substantiated by the data of Anderson and Johns (Reference 20). 

-0.5 

Warren (Reference 27) derived a simpler solution by restricting the problem to the 
conservation of mass, momentum and energy, consequently his results are only valid 
for the mixing of similar gases. Eggers, (Reference 21) performed experiments with 
a cold Mach 2.22 iet and compared his measurements with the theoretical results of 
both Kleinstein and Warren. He found that Warren's results generally gave the 
better agreement. 

As previously mentioned, development of successful theories for the analytical 
prediction has been hindered by the lack of experimental data. Currently, 
available data i s  sketchy and the present theories rely on experiment to provide 
empirical constants such as the eddy viscosity terms. Some success has been 
achieved in predicting velocity profiles but, in  general, no theory can yet be 
relied upon to provide the details of flow geometry which are important in a 
definition of the near field noise characteristics of a given flow. Even i f  an 
adequate theory i s  developed which may be applied to the flow from an ideally 
expanded nozzle, the real situation i s  so grossly complicated by the formation 
of shock waves within the flow, which again are important from an acoustic 
standpoint, that it is doubtful whether such a theory would be of practical value. 

However, i t  i s  believed that available experimental information can be utilized 
to construct a realistic flow model which can be used with some confidence in 
the task of noise prediction. 

2.3 The Development of a Shock Pattern in Supersonic Flow 

Practically a1 I supersonic exhaust flows are characterized by a standing shock 
pattern. Careful nozzle design and subsequent design-point operation can result 
in flow which i s  shock free for al l  practical purposes, but in practice, rocket 
nozzles normal ly encounter design operation at one particular ambient pressure 
only, i .e., at one particular altitude. On the launch pad and in the early 
stages of flight where acoustic problems are significant, the ambient pressure i s  
higher and the nozzle i s  operating in an "overexpanded" condition. 
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However, it i s  appropriate to consider both over and underexpanded cases, and 
Figure 9 shows the development of shocks as the chamber pressure is  increased 
from a low value through and above the design condition. The diagrams depict 
an idealized axisymmetric jet which, although influenced by the ambient air, 
does not mix with it. The shock patterns represent the f i rst  few cycles of an 
infinite series. Figure 9 (e) i s  the perfectly expanded, parallel, shock-free 
flow, (a) through (d) are overexpanded and (f) through (i) are underexpanded. 

Starting at Figure 9 (f) the nozzle pressure ratio i s  slightly above i t s  design 
value. The static pressure at the nozzle i s  therefore slightly above ambient 
and the flow expands slightly. At the same time the flow accelerates in an 

pressure becomes less than atmospheric at a point downstream. Consequently, 
the iet boundary i s  compressed inwards again and at some point the pressure 
inequality gives rise to a shock wave where the flow attempts to correct matters. 
In doing so, however, the static pressure i s  increased to a value above ambient 
and the nozzle conditions are effectively regenerated so that the cycle i s  infinitely 
repeated. This cycle property of the shock structure i s  always found; i t  results 
merely because the fluid has inertia. 

,, axial direction. The inertia of the fluid causes an overexpansion and the static 

As the pressure ratio i s  increased, the shocks increase in both extent and strength 
and eventually meet at the iet axis, forming a cone. This state i s  shown in( 9). 
At around the same pressure ratios, a fan of expansion waves emerge near the 
nozzle l ip as the flow expands very rapidly. A further increase in pressure causes 
the shocks to reflect at the axis as illustrated in (b), and the flow near the axis 
now undergoes a double compression and expansion during each cycle. 

As the pressure ratio is increased s t i l l  further, conditions exceed those for which a 
reflection i s  possible and the intersection i s  split by a further shock which i s  normal 
to the axis. Since the flow i s  axially symmetric, this shock front takes the form of 
a disc which i s  known alternatively as the Mach disc or Riemann Wave. At greater 
pressure ratios no further change in the basic shock pattern occurs. The Mach disc 
increases in diameter and the flow boundaries exhibit increased curvature. 

As Figure 9 indicates,an increasing pressure ratio also increases the basic length of 
each cycle of the periodic cellular structure. As the pressure i s  decreased below 
the design point, the reverse occurs, and the cell length decreases. Otherwise 
the shock patterns pass through a very similar series of changes, with the main 
exception that the excess ambient pressure causes a basic depression of the iet  
boundary and the mean flow diameter i s  significantly reduced. Figure 9 clearly 
demonstrates the general increase in the flow dimensions as the pressure ratio i s  
increased from i t s  lowest value which gives an increased thrust by increasing mass 
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flow. Another difference in the overexpanded flow structure i s  that between the 
nozzle and the f i rs t  shock interaction or Mach disc, the pattern i s  not character- 
istic of the regular periodic flow which i s  established downstream of that inter- 
section, in the underexpanded cases the structure i s  approximately periodic from 
the nozzle outwards. As the chamber pressure i s  reduced to the critical pressure 
ratio of 1.89 the shock pattern degenerates to a normal shock across the exit plane 
of the nozzle, eventually disappearing as the exhaust becomes subsonic. 

The foregoing discussion of the flow properties relates only to an "idealized" jet 
which does not mix with the ambient atmosphere and which retains i t s  momentum. 
In practice, neither of these stipulations is  true. The flow interacts with the 
ambient medium forming a turbulent mixing region which eats into the laminar 
core, eventually consuming it entirely, and the shock structure itself extracts 
energy from the flow in the form of heat, a process which slightly reduces the 
mean velocity with increased axial distance. A more realistic representation 
of a typical flow structure i s  shown in Figure 10. Comparing this with Figure 2, 
which shows an equivalent shock-free flow, it can be seen that the main difference, 
in addition to the presence of the shocks themselves, lies in the deformation of the 
boundaries of the various flow regions. In contrast to the idealized jet of Figure 9 
the supersonic region of the flow i s  now finite and the shock pattern deforms as the 
mean flow velocity decreases and eventually disappears at some point downstream 
where the velocity becomes subsonic. It i s  important to note that downstream of 
the laminar core tip the mean axial velocity decays rapidly and the disintegration 
of the shock structure proceeds at an equally rapid rate. Figure 11 shows a series 
of shadowgraphs from Reference 50 which clearly show the described development 
of the shock pattern as the pressure ratio i s  increased from sub-critical to super- 
critical as well as i t s  downstream degeneration due to energy and momentum losses. 

2.4 Definition of Shock Geometry 

Compression, expansion and shock waves in jets were noted and experimentally 
studied by many noted scientists including Mach, Prandtl, Von Karman and 
Lord Rayleigh around the turn of the century. In later years, since 1920, attempts 
have been made to calculate flow patterns for various supersonic jets using the 
method of characteristics. Among many others, Pai (Reference 28) notes the work 
of Prandtl and Busemann, and Pack, who applied the method to two dimensional 
flows. Sauer (Reference 29) and Pa; (Reference 30) calculated the flow pattern 
for a stationary, axisymmetric iet exhausting into quiescent air. 

However, despite the extensive analytical studies that have been conducted, theory 
as yet, only provides understanding of the mechanisms which give rise to the shock 
patterns in a supersonic exhaust. The problem of calculating shock locations and 
shapes in a uniform flow i s  difficult enough, but the added complication of the 
highly sheared velocity profiles, which exist in a real iet, practically obviate 
a l l  chance of developing a practical prediction method. We must therefore turn 
to experiment. 
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Probably the most comprehensive experimental study of supersonic jets has been 
performed by Love e t  a l  . (Reference 31). Although they were mainly interested 
in the flow in the immediate vicinity of the nozzle, they present valuable data 
from which i t  i s  possible to estimate the general form of the shock pattern by 
making some reasonable assumptions. Love et  al . studied the effects upon the 
shock pattern of design Mach number (nozzle area ratio), nozzle divergence angle 
and the ratio of the specific heats of the iet gas. Unfortunately, their observations 
were restricted to the first ce l l  of the shock pattern and it i s  well known that the 
pattern i s  not exactly periodic, non-periodicity generally increasing with departure 
of the pressure ratio from the design value. However, at pressure ratios in the 
vicinity of the design point the departure i s  sufficiently small to justify the assump- 
tion that the first cell i s  typical. 

Figure 12, compiled from the results of Love et a l .  shows the variation of the ratio 
of primary cell length to nozzle diameter wi th pressure ratio for a number of nozzle 
design Mach numbers. The pressure ratio here is p / po , the ratio of the static 
pressure at the exit plane to the ambient pressure. A t  the design point (pE/po= 1) 
the cellular pattern theoretically disappears but in practice weak shocks s t i l l  remain 
due to imperfect flow conditions, and continue to define a cell length. The curves 
presented are in fact the empirical relations, derived by Love et al: 
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The abrupt change in the variation of w/dE with p d p  at pdpC x 2 i s  
connected with the reappearance of the Mach disc around that pressure ratio. 0 

These curves give a fair prediction of the experimental results throughout the 
range of pE/po and ME studied) although, there i s  some tendency at the higher 
pressure ratios to overpredict the wavelength at low Mach numbers and under- 
predict at the higher Mach numbers. It was found that varying the nozzle divergence 
angle had no significant effect on the primary wavelength. 

Figure 13 shows the faired curves of the measured location of the shock intersection 
point or the Mach disc, whichever occurs at the given combination of p d p  and 
ME. Superimposed upon these curves are the boundaries marking the ranges of 
pE/p and ME within which no Mach disc exists. As in the case of the primary 
wavePength i t  was found that the nozzle divergence angle had a negligible effect 
on the dimension. Figure 14, again derived from Reference 31 , shows the effect 
of pressure ratio and Mach number on the diameter of the Mach disc, non-dimen- 
sionalized with respect to the nozzle diameter. The curves shown were faired 
through the data for an ideally-expanded nozzle design. This time it was found 
that the dimension was extremely sensitive to the nozzle divergence angle. The 
other results for conical nozzles have been omitted for clarity and because most 
rocket nozzles are designed to give good expansion contours. For a fuller descrip- 
tion the reader i s  referred to Reference 31. 

0 

In order to use this data to estimate the shock pattern for a particular rocket flow 
i t  i s  necessary to make the following assumptions:- 

(9 That the shock pattern i s  a function of pressure ratio and design 
Mach number only. Temperature effects were not studied, and 
it i s  not likely that they w i l l  have any significant effect upon 
shock geometry. However, temperature does have some effect 
upon the iet mixing process and governs to some extent the 
boundaries of the supersonic flow. 

(ii) That the cells defined by the shock patterns are exactly 
periodic, i .e., that the ce l l  wavelength i s  constant 
throughout the supersonic flow. This i s  known to be 
incorrect and a mere consideration of the variation of 
mean velocity throughout the supersonic region suggests 
that there w i l l  be significant distortion of the cells down- 
stream of the potential cone at  least. 
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(iii) That the pattern i s  independent of the ratio of specific 
heats, y , of the jet. The validity of this assumption i s  
unknown although calculations by Love et a l  . suggest 
that y has a negligible effect on the shape of the initial 
part of the jet boundary. 

With these assumptions, and knowing the boundary of the supersonic flow, a 
reasonable estimate of the shock configuration can be established. 

2.5 Mach Number Contours in Exhaust Flow 

This section presents a method by which the mean flow properties of an ideally 
expanded supersonic axisymmetric iet can be estimated. It relies heavily on the 
experimental data of Anderson and Johns (Reference 20) which , although obtained 
twelve years ago, s t i l l  remains the most comprehensive set of supersonic exhaust 
flow data generally available. Some inconsistencies in this work have been noted, 
however, and additional data have been sought to substantiate the material used. 
The following analysis applies to the particular case of identical iet and ambient 
gases although additional experimental data provided by Reference 20 could be 
used to extend the results, at the expense of additional complexity, to the more 
general case of dissimilar gases. 

Figure 4 shows the variation of the length of the potential core (relative to the 
nozzle exit diameter) with Mach number. Eldred eta1 . (Reference 4) noted the 
collapse of the core length data on a basis of exit Mach number and derived the 
empirical relationship: 

3.45 ( 1  + 0.38 ME)* t 
X 

- =  
dE 

(2.11) 

This i s  the curve of Figure 4 and available experimental data for a variety of iet 
parameters i s  superimposed for comparison. It i s  seen that temperature and gas 
composition have remarkably l i t t le effect upon the core length. 

As discussed above, analysis of the radial spreading characteristics of a large 
variefy of iet flows has shown that the mean velocity decays approximately in 
an exponential manner with distance from the axis and can be represented by 
an expression of the form, 

- q2/2 U - U  e 
m 

(2.12) 
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A comparison of this relationship wi th  some experimental results i s  shown in 
Figure 15. The error i s  seen to be small and of the same order as the differences 
in the experimental data. Unfortunately, the bulk of the measured data i s  for 
subsonic flow or for the fully turbulent flow downstream of the laminar core in 
supersonic jets. However, the one profile measured along side the core of a 
Mach 2.22 jet by Eggers (Reference 21) shows good agreement and provides 
justification for assuming velocity profile similarity throughout the entire iet. 

- 

Anderson and Johns (Reference 20) also found similarity of the total temperature 
profiles in the fully turbulent zones of a large variety of supersonic jets and rockets. 
The non-dimensional profile i s  shown in Figure 16 plotted against the same para- 
meter q . Fitting a similar relationship to that for the velocity decay gives 

where (2.13) 

ATT = T - T 
0 mT 

i s  the centerline (maximum) value of the temperature and the suffix T denotes 

total conditions. No temperature measurements were made in the core region but 
in their absence i t  wi l l  be assumed that temperature profile similarity i s  maintained 
right back to the nozzle. 

TmT 

Both Anderson and Johns (Reference 20) and Frauenberger and Forbister (Reference 
32) found that the pressure downstream of the core t ip decayed logarithmically 
according to the proportionality relationship, 

(2.14) 

where p i s  the total pressure and p i s  the ambient pressure. T 0 

The variation of n with Mach number i s  shown in Figure 17. The mean line 
through this data i s  

E n = 1.4 + 0.43 M 
/ 

The proportionality constant in equation (2.14) can then be derived from the 
boundary condition that, at the core t ip position given by equation (2.11) 
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= 1 .o 1 

- Po 

Assuming that the static pressure throughout the { 2 t  i s  equal to ambient, the axial 
Mach number can be calculated from the isentropic flow relationship: 

(2.15) 

The decay of Mach number M 
(2.14) and (2.15) i s  shown for various exit Mach numbers in Figure 19. 

on the iet axis calculated according to equations m 

The total temperature increment has also been found experimentally to decay in a 
similar fashion. The decay exponent measurements of References 20 and 32 are 
plotted in Figure 18 and use of the mean line leads to the expression 

Assuming that velocity and temperature profiles in the initial mixing region also 
obey equations (2.12) and (2.13), Appendix A shows that the total momentum in 
the mixing region i s  given by 
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(2.17) 
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where p 
of centeryine total temperature to the ambient temperature, T 

i s  the ambient density, Um i s  the centerline velocity, t i s  the ratio 
, and y i s  the . 

ratio of the specific heats of the iet. mT 

Further, i t  can be shown (see Appendix A) that 

U 
m -  - -  

"E 

m 
M 

t 
1 1 + -  Y - '  

2 - 
Y - 1  

E 1 + -  M2 t 2 m 
Y (2.18) 

Thus, assuming that the total axial momentum in the jet i s  constant, and that the 
laminar core i s  conical, such at 

a =  1 - (%)  - 1 
X 
t 

the expression given by equation (2.17) can be equated to the relationship, given 
by nozzle exit conditions; 

2 = p u2 w rE mM E E  
(2.19) 

From this equality and equations (2.15) and (2.16) the mixing width parameter 
b can be derived as a function of axial distance. This has been calculated for 
an air iet ( y  = 1.4) with ME = 2.0, and t = 5 and i s  shown in Figure 20. 

The axial variations of M, tm , and b are sufficient to define a complete Mach 
number distribution throughout the jet. Appendix A shows that at any axial 
stat ion, 
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X 

X 

- 1  
(2.20) 

Using this result and the previously derived values of b, M, and t , the Mach 
number contours for the M = 2, t = 5 air jet have been calculated, r y  numerically 
integrating equation (2.17), and are presented in Figure 20. 

A most important parameter in the acoustic definition of a supersonic jet i s  the axial 
position, xs , of the point at which the axial velocity becomes subsonic, the “sonic 
point”. Figure 8 shows three curves of xs/d as a function of exit Mach number. 

second i s  taken from the curves of Figure 19, which were calculated according to 
equations (2.14) and (2.15). In both cases i t  was necessary to assume that the jet 
temperature i s  equal to ambient. The third curve f i t s  the experimental data of 
Anderson and Johns (Reference 20). Both calculated curves are seen to overestimate 
the supersonic core length although equation (2.5) i s  nearer to the experimental results. 
The latter are based upon total pressure measurements on the axis of supersonic jets 
and rockets, assuming the static pressure at the same point to be equal to ambient. 
However, the results are susceptible to error, particularly at the high velocities where 
the measurements were taken in  badly expanded rocket exhaust flow, where the pre- 
sence of shock waves could invalidate the static pressure assumption. More important, 
the shock structure i s  l ikely to modify significantly the flow dimensions. Johannesen 
(Reference 18) suggests that the rate of spreading increases rapidly wi th shock strength 
causing a consequent reduction in  the length of the supersonic cone. Another reason 
to suspect the experimental data i s  that around ME = 1.4, Anderson and Johns results 
indicate that the sonic point lies within the laminar core as defined by the well sub- 
stantiated empirical relationship given by equation (2.1 1). The Mach number in this 
region should, of course, remain equal to the nozzle value. Finally, since equation 
(2.15) utilizes the pressure data of Reference 20 it w i l l  seem strange that the calcu- 
lated and experimental curves do not coincide. This i s  basically because the pressure 
decay exponents presented as Figures 17 and 78 are not established until a short 
distance downstream of the laminar core tip, although there does appear to be some 
discrepancy between the given locations of the sonic point and the actual total 
pressure measurements presented elsewhere in the same report. However , the decay 
rates show agreement with those measured by Frauenberger and Forbister (Reference 
32) and the (xs/dE) curve calculated by equations (2.14) and (2.15) i s  substantiated 
by two additional experimental points taken from References 18 and 21. 

The first is calculated by the simple theory o 1 Reference 17 described above and the 
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It i s  evident that there i s  considerable doubt attached to available experimental 
data on which the foregoing analysis i s  based. Although i t  has been utilized in the 
absence of positive confirmation, it demonstrates the clear need for further valid 
and comprehensive measurements of supersonic flow parameters if accurate estimates 
of the properties of the complex rocket exhaust structures are to be made. 
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3 .O GENERATION OF SOUND BY TURBULENT JETS 

Before proceeding to the more complex problem of the noise of supersonic jets, it 
is as well to consider the noise generation mechanisms of low speed, subsonic jets, 
in the I ight of previous.work, both theoretical and experimental. 

3.1 The Noise of Subsonic Jets 

3.1.1 Lighthill's Theory 

The foundations for the theoretical study of aerodynamic noise generation were laid 
by Lighthill in 1952 (Reference 1). Although the results of his work are applicable 
to the far-field sound of turbulence, i t s  consideration i s  appropriate since it formed 
the basis for most subsequent work and for the coordination of early experiments. 

The starting point is the general equation for the generation of aerodynamic noise 
in a uniform medium at rest due to externally applied fluctuating stresses which 
Lighthill showed to be, in tensor notation, 

' 

a2 T.. 
2 2  'I (3 * 1) 

a2 P 

a t2 
a v P =  - -  

ax. ax 
~j 

0 

T - -  i s  the magnitude of the externally applied stress system. Since the right hand ' J  
term i s  a second derivative, the sound field can be regarded as that due to a con- 
tinuous distribution of acoustic quadrupoles of strength T.. per unit volume. 
Elements l ike TI, represent "longitudinal" quadrupoles and those l ike T I 2  ''lateral" 
quadrupoles. A quadrupole can be simply thought of as a close combination of four 
simple sources fluctuating in phases pairs and whose sound field i s  therefore dominated 
by cancellation effects. T - -  in equation 3.1 is, in fact, the difference between the 
effective stresses in the meb4um at rest. 

'1 

T.. = p v .  v + p.. - 2 P 6ij 
'J ' j  'J 0 

where p v i  v. i s  the momentum flux tensor, p.. i s  the real stress, both static and 
viscous and 
3.1 i s  exact. T.. incorporates the generation of sound, i t s  convection within the 

'J 
flow and i t s  gradual dissipation by conduction and viscosity. 

a' p 6.. i s  the acoustic stress. IJ It i s  important to note that equation 
I J  

The quadrupole nature of aerodynamic noise i s  important both because of the 
directionality and the pressure decay within i t s  sound field 
a simple source falls off inversely as the distance from it. However, differences 
between the distances from the "simple source components" of a quadrupole are 
negligible at points in i t s  far field and complete cancellation of the transmitted 

The pressure field of 



pressures i s  only avoided because those arriving simultaneously at a given point 
were emitted at different times. The Far field acoustic amp1 itude therefore depends 
entirely upon the manner in which the quadrupole strength changes with time, and 
i s  proportional to the second time derivative of T.. . 
The general solution to equation 3.1 for the sound pressure at the point 

~ 

I J  

i s  

(3.3) 

where the brackets < > denote evaluation at the retarded time T = t - r/ao , 
which defines the instant of emission of the sound arriving at 
integration should strictly be carried out over all space, but for practical purposes, 
fluctuations outside the flow field V , can be ignored. The vector r defines the 
position of the field point 2 relative to the source position y so that r = x - y and 
r = I& - y I .  

If the double differentiation in equation 3.3 i s  performed, the general.expression 
for instantaneous sound pressure due to the distribution of quadrupoles becomes 
(Franz - Reference 15), 

at time t. The 

+ 

ry - - N  

Iy 

(3.4) 

Here r. = x. - yi, 6.- i s  the Kronecker delta and a dot denotes differentiation 
I 1 'J 

with respect to time. The terms in i'.. represent the radiated or far field sound 

pressure and the terms in T.. and T.. represent the induction near f ie ld pressure. 
Geometric near field effects are manifested in the dependence upon r and in the 
factor ri r. r . If r -  can be approximated by xi, geometric near field effects are 

negligible. Lighthill ignored the second order near field terms to obtain the result 
for'the far field: 

' J  
' J  ' J  

J'  I 
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In order to estimate this integral contribution from the extended flow field V, i t  
i s  necessary to take into account the statistical randomness of turbulence flow. 
It i s  a general rule that for wel l  correlated sources, acoustic pressure amplitudes 
combine linearly and for uncorrelated sources, intensities add linearly. Turbulent 
flow measurements show that the Correlation between the flow properties at two 
separate points decreases with separation. As a simplified concept, we can consider 
turbulence to consist of numerous regions such that, within each, the quadrupole 
strength i s  perfectly correlated , whereas between different regions there i s  no 
correlation. This is the basic concept of an energy bearing eddy which can there- 
fore be defined as a region of correlated momentum flux. The acoustic field of an 
eddy of volume Ve can thus be written, 

r. r. 

r 
e -- 

3 

1 

4lf 
p (L) - - (3.6) 

where the variations of both retarded times and quadrupole strength throughout the 
eddy are ignored. This leads to the approximation that the acoustic power output 
per unit volume of turbulence i s  proportional to 

- 
V f4 T2 

e 
(3.7) 

The parameter f i s  a typical fluctuation frequency and T2 is a typical mean square 
value of the quadrupole strength. 

Lighthill applied this result to a crude dimensional analysis of the sound output 
from a low speed iet. He assumed firstly that T.. is predominantly dependent 
upon the term pv. v which in turn i s  proportional to pE UE . Secondly, i t  i s  
known that the Strouhal number, fdE/UE , varies only slowly with Reynolds 

number so that f i s  proportional to UE/dt. Eddy volume Ve w i l l  increase 

typically as the iet dimensions, i .e. , as dE and therefore from 3.7 the overall 
sound power, i s  proportional to 

‘J 2 
i j  

which i s  the well known eighth power law. 
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Now, although the derivation of this result i s  strictly valid for low Mach numbers 
only, i t  has been experimentally observed to hold good for ie t  exhaust velocities 
up to twice the ambient speed of sound. Lighthill suggests that this remarkable 
finding i s  in fact due to the cancelling of two corrections which must be made to 
the theory at  high Mach numbers, as follows. 

An essential assumption in the derivation of equation 3.7 i s  that differences in 
retarded times within the region defined as an eddy can be ignored. This i s  only 
justified i f  the parameter wj/a i s  small, where e i s  a typical eddy dimension 4 
(or correlation length), and w IS a typical radian frequency. This i s  only true 
at low Mach numbers but Lighthill extended the valid range of Mach numbers to 
at least M = 1 by confining frequency considerations to a frame of reference 
which moves wi th  the eddies. The existence of this frame of reference has been 
verified by the experimental work of Davies, Fisher and Barratt (Reference 5) who 
performed extensive hot-wire measurements in the mixing region of a subsonic jet, 
and showed that typical eddy velocities range from 0.2 to 0.7 times the mean 
centerline velocity with 0.5 as a reasonable average. This step significantly 
reduces the turbulent frequency range since w 1 now becomes proportional to a 
velocity fluctuation rather than a mean velocity. It also means that the eddies 
may now be thought of as moving quadrupole sources and theory (References 33 
and 34) shows that equation 3.6 becomes 

1 r. r .  
(3 *9> - 

( 1  - M, CO! 
3 r 

where ac i s  the convection velocity, Uc, divided by the ambient speed of 
sound. The directional effect of the convection velocity i s  apparent. 

Inclusion of equation 3 . 9  in an expression for acoustic intensity must be accom- 
panied by an additional factor ( 1 - Mc cos e )  to account for the increased number 
of eddies whose sound arrives at the f ield point simultaneously (Reference 35). 
Applying these convection effects, the sound intensity due to a unit volume of 
turbulence becomes (c .f. equation 3.7), 

- 

(3 . 1 Oa) 

and extending this result to the case of a jet, after the manner of equation 3.8 gives: 

(3. lob) 

\ 26 



8 
which at low values of ac retains the original U dependence. Now turbulence 
measurements at higher subsonic Mach numbers (see Section 2.0) indicate a definite 
reduction in the ratio of rms fluctuatin velocity to mean velocity. If, in fact, 
the rms velocity is proportional to U31 , a rule which appears to be approached at  

than U . Lighthill (Reference 36) points out that intensity-measurements at 8 = 90°, 
where the directionality factor i s  unity, verify this for Mach numbers between 0.5 
and 1 .O. 

the higb subsonic Mach numbers, then Ve f 4 7  T wi l l  be proportional to U*rather 

Simultaneous with this modification to the velocity power law, the directionality 
factor ( 1  - Gfc cos e)-' increases the net acoustic power output of the iet by 
increasing the power radiated at acute angles to the flow direction by a greater 
amount than the reduction in sound power radiated backwards. In fact the integral 
of ( 1 - Mc cos 8 ) ' 5 ~ ~ e r  a sphere varies roughly as U2 , which, when combined 
wi th  the U6dependence shown above , restores the original U law. 

Thus, Lighthill's theory retains i t s  validity up to exhaust velocities which yield 
mean eddy convection velocities approaching nc = 1 .O. Not only does it 
account for the observed dependence of acoustic power output on the eighth power 
of the velocity but i t  also demonstrates the directional properties of iet  noise, i .e ., 
that the bulk of the sound i s  radiated at acute angles to the jet. 

- 
8 

3.1.2 Extension of Lighthill's Analysis to the Near Field 

Franz (Reference 15) extended Lighthill's work by retaining the near field terms of 
equation 3 .A which i s  

(3.11) 

where a l l  but the first term on the right hand side express the near field complications 
of a quadrupole field. The sound intensity, defined as the average product of the 
particle velocity and sound pressure at a point can no longer be approximated in the 
near field by the far field relationship, I = p2/2p a . 
The velocity equation i s  even more complicated than the pressure relationship 3.4 
with the consequence that the intensity equation, as well as that for the mean 
square pressure, becomes extremely formidable (see Reference 15). 

0 0  

27 



For this reason, neither w i l l  be repeated here. However, by making the assump- 
tions that r i s  large compared with an eddy dimension and that eddy decay i s  a 
slow process,Franz reduced the mean square pressure equation to 

1 

(3.12) 

+ 6 . .  6 
'J !$ 

rL 2 a: ( 3r. r. ri< r j  

r 2 r4  ' J  ,2 
+ -  ' J  - 4s.. 

where the primes denote conditions at the independent position y' in the turbulent 
region. From this equation the near sound pressure field of a Iat;ral quadrupole, 
oriented along the x 1  and x3 axes, wasderived as, in a polar coordinates, (see 
Figure 21a). 

- 4 
P 2 (L) = j''"''+ sin* e cos2 0 cos2 9 

16 n2 a4 
v V' 0 

(3.13) 

9 a* 2 3 0  

r 
dY dY' 

0 + T T I  + - T  TI 
2 13 13 4 13 13 r 

Making the same assumptions regarding the nature of eddies which were made in 
the derivation of equation 3.6, and confining attention to the narrow band of 
frequencies centered on w, equation 3.13 can be written 

2% 

x 



(3.14) 

9a' ] d y  d q  
r4 w4 

3 a2 

c y -  

O +  
x [ 1 +  r w  2 2  

The equivalent expression for the radiation from a distribution of longitudinal 
quadrupoles oriented with their axes along the x3 axis i s  given as 

a 2  

r o  

- 
(3 - 4 cos2e + 1) 0 

2 2  

1 

16 n2a4 

2 
P = 

0 

(3.15) 
a4 

r4w4 

+ - 0 (9cos48-6cos 2 8 + 1 )  

It should be noted that the far field terms of equations 3.14 and 3.15 (namely the 
first) can be derived directly from equation 3.6. Also the sound field of the longi- 
tudinal quadrupole i s  independent of by virtue of i t s  symmetry about the x3 axis. 

For a single correlated eddy composed of l ike oriented quadrupoles of a single type, 
lateral or longitudinal, the terms enclosed by square brackets in  the relevant equation 
3.14 or 3.15 give the relation between the near and far sound fields (as a function of 
8 in the case of longitudinal quadrupoles). However, before these equations are 
used, to perform a dimensional analysis of the near sound field, following Lighthill, 
i t  must be remembered that the equations are subject to the same restrictions which 
apply to the far field U law, namely that their derivation i s  strictly valid for low 
subsonic Mach numbers only. 

8 

Frarlz examined the effects of eddy convection upon these equations using the same 
transformations employed by Lighthill (Reference 1) and found that the near field 
terms contained factors which are extremely involved functions of nc, 8 ,  (1 -nc 
cos e) and ( 1  - @ ). The complete expressions are much too lengthy to repeat 
here, but as an example, Appendix B shows the derivation from Franz's equations 
of the mean square pressure field of an eddy containing correlated lateral quadrupoles 
oriented along the x, , x3 axes and convected along the x3 axes at the Mach 
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- 
number Mc. This is, for a narrow-band of frequencies around o (here measured 
in the moving frame of reference) 

- ( 1  - FV j sin2 e cos29 
C 

15 p a P (0) 
0 0  

p2 (4 = 
2 r  r2 ( 1 + 5 f 1 2 )  C ( 1  - G c c o s 8 f  

6 7G (1 - Pi2) cos e 
C C 

a 

2 2  

3 (1 - ~f cos2 e - C 

C (1 - m cos e)2 r w  
C 

9 (1 - M2)4cos26 1 8 a  (1 .. n2)% 8 9 m2 (1 - A2{ )] 
C C C C - + C 

(1 - iiJ C cos e," (1 - 74 C cos e)3 (1 - UC cos el2 
(3 16) 

where P(w) i s  the total radiated sound power in the narrow freqwency band. The 
first term on the right hand side i s  as usual, the radiated, far f ield component in 
a form which can be derived from Lighthill's solution (Reference 1). Throughout 

al i ty of the particular lateral quadrupole chosen, The mean effect of eddy con- 
vection upon - arbitrarily oriented quadrupoles, of either type i s  expressed by the 
factors (1 - Mc cos e)m where m is seen to take values between 5 and 9 .  The 
generality of this result can clearly be seen in equation (90) of Reference 15. 

the righthand side, the factors l ike sin2 8, cos 2 q ,  cosn 9 define the direction- 

The terms of equation 3.16 express the relationship between the near and far field 
sound pressure level, which i s  seen to be dependent upon both 8 and mc. For 
these lateral quadrupoles, writing the wave number k = o/a,, 

- 
6 Q  (1 - a2)  

+ C C 
3 (1 - F; \2 )2  

2 (1 - mc COS 

- C 

(1 - Eic qcOs e 
p2N - - 

PF 

(3.17) 
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Where the subscripts N and F denote near and far field components respectively. 
It can also be shown that for longitudinal (Reference 15) quadrupoles with their 
axes along the x3 axis. 

- 
(4 - 9 P )  

cos2 e 
C 

12m (1 -W) 

(1 - M cos e) cos e 
- C C 

3 (1 - 74 2)2 

(1 - COS 

- C -- 

C C 

1 
p2N - 
-2 
PF 

(l -3av 12(1 - 3k2)(1 -Lt2)a 
c +  C 

6(1 - 9a2)(1 - n2)2 
- c +  C - 

c0s3e (1 - M cos e) cos4e 

(3.18) 
C 

( I  -7J cos e)2 
C 

The variation of &,I$ with convection Mach number GC, for the lateral 
quadrupole case calculated according to equation 3.17 for k r = 0.25, i s  shown 
in Figure 21tb. Equation 3.18, for the longitudinal quadrupole, on the other hand, 
shows some inconsistencies, in particular, becoming negative through a considet- 
able range of GC , kr, 6.  The same i s  true of equation 3.15 for the unconvected 
case. For this reason the validity of the quadrupole expressions i s  suspected 
although no errors have yet been found. 

As discussed in paragraph 3.1 .3, lateral quadrupole radiation as defined by equation 
3.17 wi th  the x3 axis corresponding to the jet axis, i s  typical of the initial mixing 
region of a jet. Figure 21b, therefore, gives some idea of the magnitude of the 
near field amp1 ifications which may be expected due to hydrodynamic fluctuations 
near the jet boundary, i .e., of the order of 30 dB. The particular profiles of these 
amplifications are the result of the complicated lobed patterns associated with the 
different terms in the equation. In reality, a somewhat random source orientation 
and disposition w i l l  obscure these patterns, although the amplifications would be 
expected to remain of the same order. 

3.1.3 Correlation of Theory and Experiment for Subsonic Jet Noise 

As previously discussed in Sections 1 .O and paragraph 3.1 .1, Lighthill's U law for 
law for the noise power of subsonic jets i s  now well substantiated experimentally 
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(see Figure 22 taken from Reference 37). Further, the directionality factor 
(1 - Ftc cos €I)-5 explains to some extent the observed increase with nozzle 
velocity of the sound radiated at acute angles to the exhaust flow direction. 

This factor taken no account of quadrupole type or orientation, i t  merely defines 
the effects of source motion. However, Lighthill points out that in  the region of 
high shear alongside the laminar core, lateral quadrupoles w i l l  show preferred 
orientation with their axes normal and parallel to the jet axis. This i s  due to the 
effect of the mean rate of strain. Such quadrupoles exhibit directionality peaks 
at 45O and 135O to the iet axis, and convection emphasizes the peak at the acute 
angle (Figure 23a). However, in  addition to these particular predominant sources, 
quadrupoles of different types and orientations wi l l  exist as a result of the fluctu- 
ating rates of strain and the other terms in T O -  . This causes a general smoothing 
of the directionality pattern due to the dominant lateral quadrupoles. A sketch 
of this effect i s  included in Figure 23a. Experimental corroboration for this result 
i s  to be found in  the model iet results of Lee eta1 . (Reference 38) which are pre- 
sented in Figure 23b. Directionality curves at the higher frequencies clearly show 
the two "humps" and it i s  the higher frequencies which are generated in the core 
region. Further downstream in the fully developed mixing region the mean shear 
i s  much reduced with the result that quadrupoles of both types wi l l  exist in more 
random orientation, thus, explaining the disappearance of the first "hump" in the 
low frequency curve of Figure 23b. 

!J 

- 
The convection effects included in the factor ( 1  - Mc cos 8)-'wiIl vary with 
radial positions in the flow. Davies, Fisher and Barratt (Reference 5) have mea- 
sured in the high shear region, by hot wire anemometer correlation techniques, 
eddy convection velocities varying between 0.2 and 0.7 times the exhaust velocity. 
This variation w i l l  obviously have further effects upon directionality, although 
these are closely related to the notion that sound rays are refracted in "wind 
gradients", which of course, are very high in the shear region. 

Jet temperature gradients also affect directionality through variations of the local 
speed of sound which again causes sound refraction An increase in the speed of 
sound in the iet increases refraction causing directionality peaks to rotate ouiwards 
from the jet axis. This effect has been shown experimentally by Atvars eta1 . 
(Reference 39) who investigated the radiation from a point source inserted in a iet 
flow. Also, Lee eta/. (Reference 38) collapsed experimental directivity data on a 
basis of a temperature-modified Strouhal number, suggesting the angle of peak 
directivity to be given as 

The scatter of the data i s  considerable but the 

+ 2.1 ] degrees 

equation clearly expresses the trend. 

32 



Ribner (Reference 40) and Lighthill (Reference 36) use equation 3.7 to examine 
the axial distribution of sound power generation in a subsonic jet, basing their 
arguments on the experimental measurements of turbulence intensities in the 
various flow regions (References 4, 5, and 41). It has been shown that in the 
core region, typical root mean square velocities are constant and proportional 
to the iet exit velocity. Eddy dimensions (correlation length) increase with axial 
distance from the nozzle and in direct proportion to it. Downstream of the transi- 
tion region, both the axial velocity and rms velocity flubtuations vary approxi- 
mately inversely as axial distance. 

Now the sound power per unit volume is  given by the proportionality 

d P  v e f47 
a: 

d V  

and in the core region, 

a5 Po 0 

T.. a: pv.v I: pu;; f 
'J  ~j 

v oc 1 3  
e 

so that 

a: U 

3 o c x  

-.  U 
X I  

d V  a s  x 
0 

but the volume i s  proportional to x (for an annular section) and therefore, 

d P  

d x  as 
a: 

0 

i .e., a constant along the core region. 

(3.19) 

In the fully developed mixing zone the mean centerline velocity U is roughly 
proportional to l/x . Therefore, 
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i.e., to x - e j - '  

but the volume is  proportional to x 2 (for a circular sec 

a: x -6  $" d P  
d x  
- 

ion) so tha 

(3.20) 

Although 1 varies l i t t le until well downstream, around 20 diameters, i t varies 
approximately as l/x again beyond that point and 

- 7  a: X 
d P  
d x  
- (3.21) 

This theoretical prediction, that in  the core region the sound power per unit length 
i s  constant, and, in the fully developed downstream region, proportional to xm7 i s  
difficult to verify experimentally. Certainly the power does fall off rapidly down- 
stream of the core tip, but sound pressure measurements near to the jet boundary 
suggest that the decay is less rapid than xB7 . Eldred eta1 . for example, (Refer- 
ence 17) performed an extensive analysis of measurements of the near field noise of 
a turbojet exhaust taken by Howes and Callaghan (Reference 42). From consider- 
ations of source distributions and directionality they determined that the sound 
power distribution increases s l i  htly wi th  distance up to the core tip and beyond 
there decays more nearly as x . This disagreement with the theory i s  explained 
as a result of the convection of turbulence downstream from the core region, but 
an alternative explanation, and one which i s  corroborated by other observations 
discussed below, i s  that induction near field effects increase the sound pressures 
close to the jet, giving rise to overestimations of sound power. Since near field 
effects increase with a decrease in frequency, at a given distance, the near field 
sound pressure increment wi l l  increase with distance from the nozzle. The near 
field amplifications are in fact proportional to f'* and f-' (see equations 3.17 
and 3.18) and the frequency, f, varies approximately as either l/x or 1/x2. 
Thus, the axial error in sound power could vary as powers of x beiween 2 and 8. 
This could easily explain the x- ' discrepancy described above. 

3 

Based on the same measured turbulence properties, it i s  also possible to use equations 
3.19 and 3.21 to estimate the form of the noise spectrum. It i s  assumed that each 
axial location of the iet is associated wi th  a unique frequency, an assumption which 
although incorrect, i s  a reasonable approximation, since the frequency at which the 
peak level occurs changes with axial distance, in the core region at least. 
assumptiorts that f (x) oc l/x in  the core region, and f (x) oc 1/x2 down- 
stream, are retained and the spectrum i s  given by 

The 
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d P  - d P  d x  
d f  d x  d f  
- - _ . _ . . -  (3.22) 

Thus, from 3.19, 3.21, and 3.22, in  the core region, d P/d f 
downstream, d P/d f oc f2, In other words, at low frequencies the spectrum 
increases by 6 dB per octave and at high frequencies i t  decreases by 6 dB per octave. 
Figure 24 shows the envelope by many measured far field noise spectra, taken from 
Reference 49, plotted against the non-dimensional Strouhal number, compared with 
these theoretical slopes. The agreement i s  seen to be good in the light of the crude 
assumptions made. 

a: fm2 and 

Contrary to the assumptions made above, sound of a given frequency i s  generated 
throughout an extended region of the jet, although an axial position can be defined 
at which the power per unit length (in a given frequenqy band) reaches a maximum. 
Alternatively, a given "slice" of jet generates a finite spectrum of sound. 

Support for the validity of the assumed relationships for the dependence of frequency 
on axial distance i s  illustrated in Figure 25, taken from Reference 17. This shows 
the frequency of the peak spectrum level, taken from the turbojet boundary sound 
pressure measurements of Reference 42 as a function of axial distance. A sharp 
change from the l/x law i s  clearly seen to occur at the core t ip although the 
exponent of the downstream decay i s  nearer to 2.5 than 2 .O. 

Since frequency i s  inversely proportional to distance, in the core region, i t  might 
be expected that the spectrum per unit slice would scale as a function of an "axial" 
Strouhal number with the constant length parameter dE replaced by x. Eldred, 
etal.  (Reference 17) verify this, showing that the measured sound pressure level 
spectra measured at various points along the 10 degree iet boundary collapse when 
plotted against a modified Strouhal number f x aE/UE ao. 

Now, in  the downstream region where f cc 1/x2 i t  might similarly be expected 
that an x2 factor results, since the peaks of downstream spectra should occur at  
lower frequencies than those near the nozzle, but this i s  not the case, and Eldred, 
eta1 . found the puzzling result that, downstream, the spectrum i s  independent of 
axial distance. This could again be explained by near field effects. As axial 
distance i s  increased, boundary measurements are made at greater radial displace- 
ments from the probable source locations because of the expanding flow contours. 
This means that augmentation of the low frequency levels (small kr) w i l l  be greater 
at points nearer to the nozzle, effectively shifting the measured spectral peaks to 
lower frequencies. This wi l l  tend to oppose or nullify the shift in the radiated 
component predicted from the variations in turbulence frequencies. Such an effect 
i s  illustrated in Figure 26. 

/ 

More difficult to explain i s  the excellent agreement found in Reference 17 between 
the sound power spectra calculated from sound pressure measurements taken either 
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at the jet boundary or in  the far field of a turbojet engine. Near field effects 
would be expected to amplify low frequency sound pressure levels by increments 
in  the order of 15 dB or more, at positions close to the jet. The technique for 
evaluation of the near field measurements was rather laborious, involving an 
equation to calculate the variation of the directionality of the radiated sound 
with both frequency and axial location. Briefly, initial estimates of the variations 
of angles of peak radiation were made from the correlations of the filtered outputs 
of two microphones spaced on a line parallel to the jet boundary. These angles 
were utilized, in combination with the measured sound pressure levels, to estimate 
the sound power radiated from each of a number of truncated conical segments of 
the exhaust stream. On the assumption that the axial variation of directivity i s  a 
function of x/x, an iteration was performed, equating measured far field directivity 
indices to the integrated effects of successive approximations to the directivity 
functions for each segment, using a relationship of the form 

(3.23) 

Here, Pi i s  the calculated power of the i-th segment, D; (f,6) i s  the directivity 
for the i-th segment, of the sound in the frequency band defined by f, and F (f,6) 
i s  the far field directivity in the same band. Since this method includes no require- 
ment to equate near and far field sound power, a comparison of the far field spectrum 
with that calculated from the boundary measurements in conjunction with the derived 
directivity functions, affords a check on the accuracy of the latter. Very close 
agreement was obtained, a finding which implies a complete absence of near field 
effects. This seems unlikely, and it i s  admitted that there are many possible sources 
of error. Among these, the fundamental assumption regarding the parameter x/A 
could be incorrect. Also, the iteration was performed using the individual segment 
power estimates based on the mean directionalities derived from space correlation 
measurements. The dangers of utilizing, for this purpose, the correlation coeffi- 
cients measured in a sound field containing near field reciprocations and eddy con- 
vection effects are apparent. 

3.2  The Noise of Supersonic Jets 

When the pressure ratio across a iet nozzle exceeds the critical value of approxi- 
mately 1.89, the iet can be classified as supersonic, because in some region of 
the exhaust, the flow Mach number w i l l  exceed 1 .O. From an acoustic point of 
view a better definition of a "supersonic" iet would be one in which eddy con- 
vection velocities exceed the ambient speed of sound, for i t  i s  when this condition 
i s  reached that Lighthill's fundamental theories break down completely. Thus, 
aerodynamically subsonic jets whose exhaust gases are at high temperatures or are 
composed of gases which have a high speed of sound (e.g., helium) may be classi- 
fied as "acoustically supersonic". For supercritical flows (i .e ., jets wi th  
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pT/po > 1.89) which are aerodynamically supersonic, additional complications 
are caused by the generation of shock waves within the flow which both modify 
the flow geometry and generate additional sound by independent mechanisms. 

The flow characteristics of supersonic jets have been discussed in Section 2 .O. 
It i s  apparent that downstream of the sonic point, the flow is  essentially similar 
to the fully developed mixing region of subsonic jets, and wi l l  therefore retain 
similar acoustic properties. Upstream of this point however, the flow is char- 
acteristically different, and additional theory i s  required to explain i t s  sound 
generation mechanisms. It i s  shown in  Section 2 .O that the flow upstream of the 
sonic point can be divided into three distinct regions which are important in 
defining the exhaust structure. They are: 

a) A supersonic laminar core; 

b) 

c) 

A supersonic, turbulent annular core; 

A subsonic turbulent annular mixing region. 

For an ideally expanded ie t  these regions can be reasonably well defined and mean 
velocity contours can be mapped with a fair degree of accuracy. For an improperly 
expanded jet, compression, expansion and shock waves appear in  the flow, producing 
distortions of the regional boundaries, which are difficult to predict. 

Supersonic flow introduces many complications to the problem of analyzing sound 
generation, both theoretically and experimentally, and the majority of these are 
unsolved. These problems, together with the general properties of the noise field 
of supersonic jets, form the subject of this section. 

3.2.1 Ffowcs Williams' Extension of Lighthill's Theory to Supersonic Flow 

Before discussion the practical problem of noise prediction for a supersonic exhaust, 
it i s  necessary to examine the basic mechanisms of aerodynamic noise generation by 
supersonic flow. It i s  clear from a consideration of acoustic efficiency that some 
fundamental change takes place as i t s  value falls from a U dependency to a constant 
at  very high speeds. Also, as discussed in Section 1 .O, the general noise field of a 
rocket exhaust differs appreciably from that of a turbojet (see Figure 27) with the 
maior noise producing region apparently located at some large distance downstream. 
Some of the observations are explained to some extent by an extension of Lighthill's 
basic theory due to Ffowcs Williams (Reference 3), which gives an exact solution for 
the peak noise radiation given by the singularity in Lighthill's equation 3.10 when 

5 

cos e = l/mc. 
Ffowcs Williams recognized that the limitation to Lighthill's solution was imposed 
by the assumption that the variation of retarded time within an eddy can be neglected. 
This assumption leads to the result that both the ''emission time'' and ''emission volume" 
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of an eddy increase as the factor ( 1  - Mc cos e)-' It w*i l l  be remembered that the 
emission time i s  the period during which a particular eddy generates sound which 
arrives ut a field point simultaneously, and the emission volume i s  the source 
volume associated with this time period); Thus, when cos 8 = 1/nc the ampli- 
fication due to eddy convection becomes infinite, clearly an impossible situation. 
The fault wi th  Lighthill's assumption, of which he was aware, i s  that an eddy has 
a finite coherent lifetime and the decay of 
increase of the emission properties with ( 1  - 

an indefinite 

Instead of expressing the mean square sound pressure as a function of the mean 
turbulence stress tensor within a correlated eddy, Ffowcs Williams (Reference 3) 
derived a relationship for the far field pressure autocorrelation in terms of the 
space-time turbulent stress-tensor correlation function. Thus, the square of 
equation 3.5 i s  replaced by an equation of the form* 

where (3.24) 

y i s  the turbulence position vector, 4 is a displacement vector such that 
hl 

where 7 i s  the value of the retarded time at station y and T i s  the difference 
in the retarded times between stations y and y + &. 
The effects of eddy convection are studied by transforming the separation vector 
4 of equation 3.24 to one which moves with the eddy, 
( gC i s  the eddy convection Mach number relative to y ) .  Specifying a moving 
axis correlation tensor, 

'v N 

where = h + a. gC T 

cy 

it i s  then shown that equation 3.24 can be written in the form 

* In fact, reference 3 includes consideration of an aircraft flight Mach number, 
but the equations presented here have been simplified to the static case. 
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(3.25) 

which i s  evaluated with 

- - 
The factor I r - 4 5: 1-1 - 5  in equation .25 i s  synonymous with ( 1 - Mc cos 
in Lighthill's equation 3.10 which causes the singular condition at supersonic eddy 
convection velocities, namely when r approaches 0 A. However, in  this 
case the correlation function time derivative also approaches zero and the solution 
remains finite. The radiation emitted in this case takes the form of eddy Mach 
waves which are analogous to the Mach waves generated by thin supersonic airfoils. 

This type of sound generation mechanism was first described, and so named by 
Phil lips, (Reference 43). It has already been explained (Section 3.1 .l) how at 
low speeds quadrupole acoustic efficiencies are low due to the near-cancellation 
of the opposing source elements. As the component of the convection velocity in 
the direction of the observer increases, cancel lation becomes less complete, en= 
hancing the radiation in that direction. This process i s  obviously subject to the 
limitation that the efficiency cannot increase beyond that of simple sources, where 
there i s  no cancellation. This i s  the situation which arises when the convection 
Mach number i s  unity in the direction of the observer who then "hears" the quadru- 
pole as four simple sources. At convection Mach numbers higher than unity, the 
constitutent sources are heard in reverse time, (i .e., the sound from "aft" components 
reaches the observer before that from the ''forward" components) and there i s  once 
again some cancellation . This cancellation increases with further increases in 
velocity with a consequent decrease in acoustic efficiency. 

Thus, the noise from a supersonic turbulent stream i s  highly directional, having a 
strong peak in the direction of greatest acoustic efficiency which i s  the Mach 
Angle, eM = cos" ( 1 /mc). 

The simplified physical description of Mach waves accounts for the theoretical 
findings of Reference 3. Ffowcs Williams was able to show that, near the singu- 
larity in equation 3.25, the volume integral can be reduced to a surface integral 
by integrating in the direction of giving 
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where the suffix r denotes differentiation with respect to the component of 
the r direction, u i s  the time variable of integration, and d&, i s  an area element 
in th; plane normal to the direction of Mach wave emission defined by 

in 

Combining equations 3.25 and 3.26 leads to 

(3.27) 

Immediately apparent in this equation for Mach wave emission i s  that i t  does not 
involve the infinity at points where r - M 
used to define acoustic intensity at those points. It should also be noted that the 
solution i s  independent of retarded time differences. 

- 
* r = 0, and it can therefore be - .= 

Turbulence correlation functions have not, of course, been measured in supersonic 
flow, but by assuming a hypothetical, but real istic form for the correlation tensor 
in equation 3.25, (i .e., one where turbulent scales are constant while frequency 
varies directly with velocity) Ffowcs Williams (Reference 3) was able to demon- 
strate that the effect of eddy convection on the radiated sound intensity i s  accounted 
for by a factor which i s  proportional to 

1 1  - - M cos 8)2+(+)2)- "/2 
C 

(3 .28) 

In particular, the acoustic intensity of unit volume of turbulence, the Iow-speed 
form of which, due to Lighthill, i s  given as equation 3.10 i s  proportional to 
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(3.29) 

Lighthil I (Reference 36) gives a particularly illuminating physical explanation for 
the presence of the additional term inside the brackets at positions associated with 
the directional peak. 

Figure 28a represents the progression of a non-decaying eddy with time for various 
convection velocities and it can be seen that both emitting volume and emission 
time increase to infinity as A, cos 0 approaches 1 (i.e., as the slope of the lines 
representing eddy motion approach the slope of the second signal). However, as 
discussed previously, this notion of a moving eddy is unrealistic and account must 
be taken of the finite l ifetime of the eddy. This i s  done in Figure 28b which i s  
similar to Figure 28a but represents the real eddy by curves of constant correlation. 
This clearly shows that for low convection velocities, when Gc cos 0 << 1 the 
emission volume and time differences are s t i l l  increased approximately by the factor 
( 1  - ac cos e)-'. However, now, when the previous singular condition i s  reached, 
both remain finite. In fact, both are increased by the factor ao/w$ . 
Using equations 3.25 and 3.27 i t  i s  possible to perform a crude dimensional analysis 
of the sound radiation by supersonic jets. This must be based upon.the assumption 
that the stress tensor T o -  remains proportional to pEU2E, in the lack of any experi- 
mental evidence. 

'J 

4 
In equation 3.25 the correlation tensor P.. 
and the time derivative can be obtained by dividing by a typical time scale 
dE/UE giving 

i s  dimensionally similar to p i  UE 
'J kLl 

The inte rations over A and y are both represented by multiplying by the volume 

to B (t-, t, O)/po a. is given by the proportionality 

scale, dE B . Thus, from equatzn 3.25, the acoustic intensity, which i s  proportional 

(3.30) 

which i s  the previously derived result (equation 3.10) for low speed flows. 
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At very high velocities, where Mc cos 8 >> 1, this approaches the asymptotic 
form 

(3.31) * 

where it i s  clear that the sound generation efficiency i s  much reduced and the 
eighth power law has been replaced by a cube law. 

At and near the singularity inherent in equation 3.30, when Mach wave emission 
i s  predominant, the dimensional analysis i s  applied to equation 3.27. In this case 
the differentiation with respect to X i s  effected by dividing by the typical dimension 
dE; the integration with respect to time, o ,  by multiplying by the time scale dE/UE; 
and over ,.&,by multiplying by a typical area d i  . Thus, from equation 3.27 the peak 
intensity at the Mach angle 8M i s  

(3.32) 

which i s  very similar to equation 3.31 for quadrupole radiation at high speeds, 
again showing dependence on the cube of velocity. Since the mechanical power 
of a iet i s  also proportional to the third power of i t s  velocity, both equations 3.31 
and 3.32 imply that the sound generation efficiency of a jet i s  constant in the 
regions where convection velocities approach and exceed the ambient speed of 
sound. 

The dimensional relationship 3.32 can also be derived from equation 3.29 and this 
description i s  probably more meaningful, physically. At the Mach wave condition, 
1 - ac cos 8 = 0 and equation 3.29 becomes 

v fAT2 
e 

a5 
0 

5 a 
Po 0 < w e > ”  

(3.33) 

Again extending subsonic results to the supersonic regime, assuming the basic 
property of turbulence, which Davies, Fisher, and Barratt (Reference 5) found 
experimentally, that the product of frequency and length scale, w a  , measured 
in the moving frame, i s  roughly proportional to the rms turbulent velocity, 3.33 
gives the same result as 3.32. 
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3.2.2 The Near Field of Supersonic Jets 

Section 3.1.2 describes an extension of Lighthill's subsonic flow analysis which 
takes account of the acoustic near-field effects which are characteristic of multipole 
sources. Figure 21 b gives some indication of the magnitude of the near-field sound 
pressure amplification as the eddy convection velocity increases to the value 0.9. 
However, equations 3.17 and 3.18, from which these curves were derived suffer 
the same limitations as Lighthill's basic result (equation 3 .lo) for convected eddies, 
in that the neglect of retarded time variations leads to the singularity at the Mach 
angle, 0~ = cos-,' (l/fic), for supersonic flow. It has been found experimentally 
that the simple U law for total acoustic power (equation 3.8) maintains i t s  accuracy 
up to sonic convection velocities, and Lighthill has suggested (see paragraph 3.1 .l) 
that this i s  because the sound - power amplification caused by the integrated effect of 
the directionality term (1 - Mc cos €I)-' i s  offset by the reductions in the rate of 
growth of turbulent velocity fluctuations with mean velocity. However, whether 
or not a similar argument would apply to the near field sound pressures i s  open to 
question. Equations 3.17 and 3.18 show that pressure amp1 ifications in the near 
field are elaborate functions of mc and 0, whereas Lighthill's compensating mech- 
anism would only seem to hold i f  these corrections were independent of velocity. 

At very high velocities, at angles where FJc cos 0 >>1, equation 3.17, which 
defines the ratio of near field induction sound pressure level to the radiated com- 
ponent, for the x 1  , x3 lateral quadrupoles, approaches the asymptotic form 

and soagain assuming k a: f a: U/ l  , and Mc a: U 

a: 

(3.34) 

(3.35) 

It i s  interesting to note that the term in ( k r ) - '  disappears and that the remainder 
i s  independent of velocity. The equivalent asymptotic proportionality for the x3 
longitudinal quadrupole, on the other hand, retains both terms and 

- 
60 a' 

C 
6 mz 

+ C p2N + 

p; 

- 
( k r ) *  cos3 0 ( k r ) '  cos40 

x 
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However, at distances from the flow which are small enough for either term to have 
any significance, the second of these w i l l  dominate and therefore, with the previous 
assumption, 
- 

(3.37) 
2 
PF 

From these two results, equations 3.35 and 3.37, we can make the following 
observations, bearing in mind that the result given in equation 3.36 can only be 
tentative in view of the possible errors mentioned in paragraph 3.1 -3. 

lateral quadrupoles are those sources "a For the case of a supersonic jet, the x, , 
which may be expected to predominate in t e highly sheared mixing layer adjacent 
to the core, as discussed in paragraph 3.1 .1 ,  whereas longitudinal quadrupoles w il I 
mainly be confined to the downstream regions. Thus, in the sound field adjacent to 
the initial mixing region of a highly supersonic jet, at angles less than the Mach 
angle, where mc cos > > 1, the induction near field effects may be expected to 
decay as ( & - ) 2 .  Extending the assumptions made in the dimensional analysis of 
paragraph 3.1.3 for subsonic jets, namely that 1 cc 
region, the decay i s  proportional (x/r)*. Thus, the decay rate obviously decreases 
with distance from the nozzle. Downstream, equation 3.37 for longitudinal quadru- 
poles would be more appropriate and the near field decay is  apparently more rapid, 
being proportional to the fourth power of a/d. However, in this region, making 
the crude approximation that oc x2 (see paragraph 3.1.3) the near field incre- 
ment w i l l  vary as ( ~ ~ / r ) ~  and since x i s  large in this area the near field i s  l ikely 
to be important over an extended area. But it i s  important to note that the eddy 
convection velocities in this region w i l l  be much less than in the initial shear layer, 
and thus the range of 0 in which Mc cos 0 wi l l  be significantly greater than unity, 
i .e., the range for which the dimensional reasoning which resulted in equation 3.37 
i s  valid, is much reduced. In fact, since the mean velocity decays roughly as x-' 
beyond the tip of the laminar core the region of application i s  probably very limited. 

x in the initial mixing 

In the region of the singularity, when FJc cos 0 approaches unity, the near field 
relationship of equations 3.18 and 3.17 break down completely. A correlation 
analysis similar to that of Reference 3 which takes account of the important retarded 
time differences would be formidable indeed, if not intractable. However, in the 
immediate vicinity of the singularity, which corresponds to Mach wave emission, 
the concept that quadrupoles degenerate into their component simple sources, imp1 ies 
a large reduction in near field effects. Since this condition i s  believed to be asso- 
ciated with a large intensity peak in the radiated sound, i t  seems likely that aggregate 
near field effects in the vicinity of the core region are small. 

44 



3.2.3 Correlation of Theory and Experiment for Supersonic Jet Noise 

The majority of noise problems encountered during the operation of turbojet engines 
and rockets have been concerned with subiective and community response to noise, 
and for this reason there exists, at the present time, considerable quantities of 
experimental data on the far f ield sound pressures, overall power and spectra 
generated by the exhausts of the two types of propulsion engines. The acoustic 
near field, on the other hand, i s  normally only of interest to structural designers, 
both of the flight hardware and support facilities, and has only relatively recently 
become a practical problem with the advent of very high power engines. Conse- 
quently, there is a noticeable lack of near field acoustic measurements for both 
turbojet and rocket exhausts. The limited data that exist, are fragmentary and 
generally poorly correlated with important exhaust parameters and the associated 
far field, More importantly, there i s  a large gap in acoustic measurements, both 
near and far field, for the intermediate range of supersonic exhaust velocities 
existing between the sonic velocities of the turbojet, which normally l i e  around 
2,000 feet per second, and those of the rocket engine which reach values as high 
as 10,000 feet per second at nozzle Mach numbers in excess of 3. 

So l i t t le i s  known about the noise generation mechanisms of a supersonic exhaust, 
that the very basic problem of which region of the exhaust stream i s  the predomi- 
nant noise source remains unresolved. The immediate noise field of a rocket differs 
appreciably from that of a turbojet as Figure 27, taken from Reference 13,clearly 
shows. Sound pressure contours such as this are typical of rocket measurements 
and strongly suggest that the bulk of the sound i s  generated in some region well 
downstream ef the nozzle, as much as 20 or 30 diameters away. This observation 
would seem contrary to the wel l  established fact that noise radiation increases 
rapidly wi th  velocity, whereas typical mean velocities in this downstream region 
are considerably less than those in the initial mixing region. Ffowcs Williams' 
basic theoretical result, expressed in dimensional form as equation 3.32 suggests 
that the condition of Mach wave emission, which w i l l  predominate in the region 
adjacent to the core where eddy convection velocities are high, forms a particularly 
intense and highly directional source of sound. Shadowgraph pictures of the acoustic 
radiation from this part of the jet, of which Figure 1 i s  a particular example, sup- 
port the view, if the intensity of the proJected wave image i s  any guide to acoustic 
intensity. The acoustic Mach number ME of this iet i s  approximately 2.9 and the 
Mach wave inclination corresponds to eddy convection velocities of Mc = 2.2 
which are, therefore, 0.76 times the iet exit velocity. Similar shadowgraphs in 
References 23 and 50 show intense radiation from a region near the nozzle lip, 
which it i s  tempting to associate with Mach wave emission. However, in both 
these instances the corresponding eddy convection velocities imp1 ied are almost 
equal to the nozzle velocity and it i s  difficult to believe that significant eddies 
w i l l  move at such high speeds. Also the fact that the radiation i s  confined to such 
a small extent of the flow tends to lessen the likelihood that i t  i s  in fact Mach 
wave emission. In this event, the source of this noise i s  a further puzzle. How- 
ever, in every case, the shadowgraphs give the impression that the highly directional 
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sound from the supersonic region i s  more intense than the radiation from other 
regions of the exhaust stream. The reason why this sound field i s  not evidenced in 
the acoustic measurements i s  obscure. One possibility i s  that their energy i s  con- 
fined to frequencies which are highly ultrasonic and outside the range of the 
microphones. Such frequencies would be rapidly attenuated within a short distance 
of the jet. Some evidence that this may be the case can be found in the shadow- 
graphs of Reference 50, which show an increase in the spacing of the Mach waves 
with distance from the jet. 

Since the evidence, which leads to the supposition that the maior noise i s  created 
downstream, i s  based upon sound pressure measurements made close to the flow 
boundaries, i t  i s  quite conceivable that the discrepancy between theory and 
practice i s  entirely due to induction near f ield effects. As in the case of the 
turbojet results which show some anomalies (see paragraph 3.1.3), sound pressure 
augmentation due to near field effects wi l l  increase with distance from the nozzle. 
However, in the case of a rocket the variation of these effects along the iet boundary 
i s  l ikely to be much greater. The peak intensity adjacent to the core i s  associated 
with the Mach wave radiation which, as discussed in paragraph 3.2.2 has reduced 
near field complications. At radiation angles other than the Mach angle the quadru- 
pole near field effects apply, decaying as (k r)’2 and (k r)-bt  angles greater than 
cos” (l/nc) and as (dE/r)’2 where mc cos 8 i s  significantly greater than unity. 
However, the radiation component at these other angles i s  small compared to the 
peak emission, and the corresponding near field effects may also be expected to be 
relatively small. In contrast, at large distances downstream, both typical frequencies 
and eddy convection velocities become much lower and the quadrupole near field 
terms are undoubtedly large. Figure 21b shows that near field sound pressures can 
exceed their associated radiation components by as much as 20 to 30 dB, at moderate 
distances from the flow boundaries. Such effects could obviously account for a very 
large increase in the apparent intensity measured at such points. 

Unfortunately, although some support for such near f ield effects can be found in 
the correlation measurements of Reference 51, it i s  difficult to justify crude rea- 
soning of this kind. A complete lack of information on the characteristics of the 
turbulence in a supersonic jet, together with the unknown effects of the complex 
shock structure which i s  inevitably present in rocket flow, make the foregoing 
arguments highly speculative. Nevertheless, the theory does facilitate an under- 
standing of some of the experimental observations and, in i t s  light, the basic 
properties of the acoustic field, namely i t s  overall power, frequency spectrum and 
directionality, each of which has an important bearing on the near field pressures, 
can now be discussed. 

Figure 22 shows an experimental curve of sound power per unit nozzle area for 
exhaust velocities ranging from low subsonic Mach numbers for small model jets 
to values in excess of 3, for rockets. The obvious reduction in the exponent of 
the velocity dependence at velocities above 2,000 feet per second i s  apparent, 
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3 
and both the U81aw and U laws, predicted by theory below about 2,000 feet per 
second and above approximately 3,000 feet per second respectively, are included 
for comparison. Experiment has shown that the acoustic efficiency of rocket exhausts 
i s  approximately constant and equal to 0.006 times the mechanical power of the iet  
stream. Since the latter is proportional to U3 , so also must be the acoustic power. 

Since the theory suggests that acoustic efficiency i s  constant for eddy convection 
velocities in excess of approximately 1.5 times the ambient sound speed, and i f  
the eddy convection velocities are assumed to be approximately half the jet center 
line mean velocity, then a considerable length of the exhaust, as much as 50 dia- 
meters in the case of rockets, should be predicted to generate sound at constant 
efficiency. This result i s  in good agreement wi th observation (Reference 10). The 
simple Strouhal number frequency parameter f UE/dE which gives an excellent 
collapse of sound power spectra for subsonic jets i s  found to be completely invalid 
for rocket noise. It i s  found that the spectrum peak in fact occurs near a frequency 
given by aO/dE, i.e., independent of velocity. Potter and Crocker (Reference 13) 
collapsed various sets of rocket data against a modified Strouhal number, 

C 
f D  

a 
s =  

0 

where Dc = Dt ps/p,, Dt i s  the nozzle throat diameter, ps i s  the static pressure 

at the throat and po IS the ambient pressure. This parameter obviously changes 
more slowly than fVE/d . This observation i s  explained to some extent by the 

wave emission condition, a l l  frequencies in the turbulence contribute to the acoustic 
radiation. In the case of subsonic flow, or at angles well removed from the Mach 
angle in supersonic flow, only a l imi ted range of small wave number components of 
the turbulence generate the sound. Thus, Mach wave radiation can be expected to 
exhibit a much wider frequency spectrum which would tend to become independent 
of speed. However, the typical frequencies of this sound, which come mainly from 
the high velocity initial mixing region, should be relatively high whereas the 
observed approximate peak frequency value, Qo/dE 
would be estimated by turbojet prediction methods which give a spectrum peak 
around f = 

Mach wave theory of Re f erence 3, where Ffowcs Williams shows that at the Mach 

i s  considerably lower than 

0.25 vE/dE . 
The comparison of the noise contours of iet  and rocket engines in Figure 27 demon- 
strates the increased angles between the iet axis and the direction of peak radiation 
in the rocket case. This angle further increases with velocity, and could be the 
result of two factors. The first i s  that rocket exhausts are very hot, and consequently 
radiation angles w i l l  be increased by refraction. The second is  that the Mach angle 
increases with increased velocity, so that a predominance of Mach wave radiation 
would explain the observed directionality . 
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3.3 Shock Noise 

As discussed in Section 1 .O there are three basic noise producing mechanisms in  a 
supersonic jet, Sections 3.1 and 3.2 dealt with two of these, namely turbulence 
noise and Mach waves, the latter being a special case of turbulence noise. The 
third arises in the presence of the standing shock pattern, which i s  very difficult 
to avoid in a high velocity jet, and i s  here loosely termed "Shock Noise". The 
generation of the shock patterns i s  discussed in detail in Section 2.3. These shock 
waves react with the turbulence in the iet mixing region to generate noise. 

Under certain circumstances this shock noise becomes particularly intense and i s  
known as "screech". When it occurs, "screech" i s  the most efficient sound gen- 
erating process encountered in jet flow, as much as 10 percent of the flow energy 
being converted to sound. It i s  caused by a resonant coupling between oscillations 
in the cellular shock structure and the generation of fluid disturbances at  the nozzle 
lip. The interaction between the oscillating compression shock and the disturbance 
radiates pressure waves which reach the nozzle and there generate further disturbances. 
This phenomenon has been extensively studied (see for example References 44 and 45, 
but since i t  only arises for very high supercritical pressure ratios it i s  not likely to 
occur during the flight phases of rocket vehicle operation which are critical from an 
acoustic standpoint, i.e., at low velocities, on or near to the ground. For this 
reason, attention wi l l  be confined here to the actual process by which sound i s  
generated due to the convection of turbulent eddies through stationary shock waves. 

It i s  a well known fact that the passage of turbulence through the shocks in a iet 
generates sound. Shadowgraph pictures of supersonic iet flow clearly show what 
appear to be strong, highly localized acoustic sources associated with the standing 
shock pattern. Reference 23 presents such shadowgraphs of a small M = 2.5 iet 
and includes a crude analysis which demonstrates, by a consideration of sound 
propagation and refraction effects, that the origin of each of a number of apparently 
omnidirectional sound fields i s  most probably the precise point where a standing 
compression shock penetrates the turbulent mixing region. 

Theoretical studies of shock interaction noise have been made by Ribner (References 
46 and 47). Kovasznay (Reference 48) demonstrated that disturbances in supersonic 
flow fall into three categories, identified as three fundamental modes, vorticity, 
entropy, and sound. Input of any one of these modes into a shock generally gives 
rise to a l l  three modes behind the shock. Turbulence, of course, i s  represented 
by the vorticity mode. 

Now, if the phase velocity of the input disturbances along the shock i s  greater than 
some critical value, then the pressure disturbances created behind the shock can 
propagate as acoustic radiation. if the phase velocity, however, i s  less than this 
value, then no sound i s  radiated and a decaying pressure field i s  generated. 
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Ribner, Reference 47 indicates that the near field mean square pressure at distance 
r from the interaction can be written in the form 

3_ 

2 
U 

* -  
- f (M) k r  

* e  
1 cc - P2 (r) 

p2 (4 m 2 U2 
0 

(3.38) 

where m i s  the ratio of the mean velocities upstream and downstream of the shock 

(and also m = (y + 1) M2 { 2 + ( y -  1) M2 } -’) where M i s  the upstream Mach 
number, T/U2 i s  the turbulence intensity, and po is the static pressure at r. 
The sound pressure decays exponentially with kr, and f (M) is given as 

where MN i s  the Mach number component normal to the shock. 

Ribner’s theory i s  based upon a very simplified model of a single frequency inclined 
shear wave impinging upon an infinite plane shock and it i s  not claimed that equation 
3.38 which i s  a crude approximation to Ribner’s result gives any more than a guide 
to parameters which are important. The real situation in  a supersonic iet  i s  extremely 
complicated. The shock front forms a complex curved surface (see Figure 10) and 
since it exists in a region of high velocity shear, i s  of variable strength. In addition, 
the shock i s  subjected to a l l  three disturbance modes, each of which can be expected 
to be of a particularly high level. However, Section 2.0 outlines methods by which 
the shock pattern can be estimated, which can at least provide information as to the 
location of shock noise sources and to coordinate experimental work which w i l l  help 
resolve this problem. 
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4 .O EXPERIMENTS TO ESTABLISH METHODS FOR THE PREDICTION OF THE 
NEAR NOISE FIELD OF SUPERSONIC JETS. 

The preceding sections of this report have described what i s  known about supersonic 
iet  flow and the various processes of noise generation which occur within it. It has 
been made fairly clear that we know very l i t t le about either, or at least, that our 
knowledge i s  inadequate for the purposes of predicting all but the very broadest 
details of the noise field. It has been shown that the noise generation mechanisms 
are very complex, particularly for the case of a typical rocket exhaust wi th i t s  
highly elaborate flow structure, and although current theory explains some of the 
observed features of the noise field, they are of l imi ted application to the practical 
problem of near-field noise prediction. 

- 

A useful prediction method should be able to specify the sound pressure level con- 
tours around the exhaust stream from details of the nozzle exit flow conditions and 
the ambient atmosphere. As stated in Section 1 .O the problems associated with 
actual operational complications such as clustered nozzles and exhaust deflection 
are considerable, and, in the light of the current state-of-the-art, it i s  recom- 
mended that attention be confined, for the present, to those of a free iet exhausting 
into a quiescent atmosphere. 

Assuming normal atmospheric conditions, the nozzle flow variables, which are 
likely to exercise influence on the turbulent mixing processes, and thus the noise, 
of a supersonic jet, are i t s  velocity, Mach number, temperature, density, static 
pressure distribution, ratio of specific heats and molecular weight. Of these, the 
velocity i s  the most important since i t  has been conclusively shown that the sound 
power varies as a high power of the velocity. Given these quantities, i t  might be 
expected that the entire exhaust flow could be calculated. However this is not so, 
and it has been explained that the main reason for this inability i s  the almost com- 
plete lack of knowledge of the turbulence generating processes in supersonic flow, 
which stems from the lack of measuring tools. Fortunately this problem i s  not too 
serious because rocket engines, for which the prediction methods are desirable, are 
basically similar in their exhaust gas composition, so that flow dimensions can be 
interpolated or extrapolated from available data with reasonable confidence. 
Section 2.0 of this report presents evidence of flow similarity and shows an empirical 
method by which the mean flow properties of an air iet can be estimated. 

Once flow similarity relationships have been established, then i t  i s  a relatively 
straightforward matter to apply these to the problem of scaling the acoustic char- 
acteristics, as has been convincingly demonstrated for subsonic jets (Paragraph 3.1). 

The immediate task, to which attention whould first be turned, i s  to achieve the 
ability to predict the near noise environment of a jet of known flow properties. 

a 
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Towards this end, this section out1 ines a comprehensive experimental program, 
suitable for execution in the Marshall Space Flight Center iet flow facilities, 
which i s  aimed to provide the vital data which is lacking at the present time. 
The init ial phase of this program i s  described in detail in  Appendix C. 

Previous theoretical and experimental work, which has been reviewed in Section 
3 .O, gives insight into the nature of the near sound field. Based on this knowledge 
the following assumptions are made. 

a) That the iet stream can be represented by an acoustic 
model consisting of a finite number of uncorrelated, 
discrete, sound sources distributed along i t s  axis. 

b) That each source can be ascribed a spectrum, a near 
field function, and a directivity. 

In order to use this model to predict near field noise contours we must determine 
the location of the N sources, and their properties as defined in (b). This can 
be done experimentally for a particular jet, by making some further assumptions 
and by correlating the sound pressures in the vicinity of the iet by a method which 
i s  developed below. 

Consider the far f ield radiation from a simple source of power P, frequency f. At  

a radius r from the source, the pressure amplitude is ( po a. P/2 II r2)”*, and the 
instantaneous sound pressure can be written 

and ut radius r + A r CIS 

p ( r + A r )  = {y c o s 2 n f ( t - > )  0 

s (r + A  r )  
(4.2) 

Thus the covariance of the two pressures is 

51 



T 

where the wave number k = 

Now if the point source radiates random frequency sound of constant power spectral 
density w (f) , within the bandwidth A f, equation (4.3) becomes 

2 v f/ao . 

A f  f +2 
Po a. w (0 2 n f  

f -7 
P ( r ) P ( r + A r )  = 4 n r ( r + A r )  IAf 'Os - A r d f  = 

a 
0 

(4 04) 

Po a. w (f) w f A r  n A f A r  
- - 4 n r ( r + A r )  (x) n A r  cos ( *  a ) sin ( a ) 

0 0 

Introducing a time delay A t  into the cross correlation i t  can further be shown 
that the space-time covariance i s  

- - 
p (r,t) p (r + A r, t + A  t) 

Po Qo w (f) 1 
- - cos2nf  ("' - - A+)sin n A f ( F -  At) 

4 r r ( r + A r )  'II - - A t )  aO 0 

When A t = Ar/a , i .e. , the time increment taken for sound to travel the 
0. distance A r , equation 4.5 reduces to 

which i s  also the maximum value of the cross-covariance. Thus, i f  the signals 
from two microphones at r and r + A r are cross correlated with a variable time 
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delay, a curve similar to that sketched in Figure 29 w i l l  be obtained. From its 
peak value, at A t = A r/ao, given by equation 4.6, the source power,w (f)Ar, 
i s  easily derived. 

Alternatively, i f  the sound source has a broadband spectrum, i t s  power in a given 
narrow frequency band, assuming it to be constant within that band, may be mea- 
sured similarly by filtering the microphone signals before correlating them. 

Before this technique can be used to determine the strength of a "source" within 
a iet exhaust, we must consider not a uniform point source but one which has both 
near and far sound fields, each with different directional characteristics. The 
sound pressure of such a source for a single frequency whose radiation i s  axially 
symmetric, can be written 

Where A/r i s  the amplitude of the radiative component, A q (r) i s  the ampli- 
tude of the non-propagating component (an unknown function of r), a (e) and 
p (e)/r are the respective directivity factors, and 9 i s  a random phase angle 
which decorrelates the two terms. At the point (r + Ar, 6) the pressure is  

where + i s  some unknown phase angle. 

Following equation 4.5, considering now a random source and introducing a time 
delay At ,  it i s  found that the cross-covariance of the two pressures becomes 

p (r, 8, t) p (r + A  r, 6, t + A t )  (4.9) 

where T i s  an unknown time increment relating to the non-propagating wave phase 
angle 2af T . The cross terms in the integration disappear becuase of their decor- 
relation. 
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Now i f  the point (r + A  r, e )  i s  outside the near field of the source, q (r + A r) 
i s  zero and the second term of equation 4.9 disappears. The remaining term i s  
exactly equivalent to equation 4.5 for the case of spherical radiation. Thus, if 
the filtered sound pressure levels at the two points are cross correlated, the source 
power, w (f) a2 (e), can be determined from the peak value of the correlation 
curve (equation 4.6) even though one microphone is  in the close near field. 

If w (f) a2 (0) i s  determined in this way and the second microphone is  then moved 
into the near field to measure the cross covariance as given by equation 4.9, the 
remaining unknowns are q (r) q (r + A r) p2 (e) and T .  The maximum value of the 
second term occurs when A t  = T and is equal to 

p a w (f) A f  

4 r (r + A r) q (r) q (r + A 4  p2 (e) 0 0  

Knowing the variation of the first term, the second can be obtained by sub-action, 
as a function of At, and i t s  peak value yields the near field cross product 
q (r) q (r + Ar) p2 (8). Therefore, starting from the auto covariance (Ar = 0 ) 
and subsequently cross-correlating the signals at a number of microphone sepa- 
rations, Ar, the near field sound pressure increment q2 (r) p2 (e) can be deter- 
mined along the line given by 8 .  

By making two further assumptions, this technique can now be used to determine 
the power spectrum, directivity and near field complications of each "source" in 
the acoustic model of the jet. The f i r s t  assumption i s  that a microphone can be 
placed sufficiently near to the jet boundary to assure that i t measures the sound 
field of one source alone, i .e., that there i s  no interference from adjacent sources. 
The validity of this premise i s  closely linked to that of the point source represen- 
tation of the jet. In reality, sound i s  generated throughout a continuous volume 
of the iet and the question of interference i s  really one of source spacing. The 
second assumption i s  identical to that made in the derivation of equation 4.9; that 
the near and far sound fields are uncorrelated. The validity of this assumption is 
unknown, although it can be checked by performing the far field correlation 
(equation 4.5) at two or more microphone separations to ensure that the radiative 
sound pressure varies inversely as distance from the source. If not, then this, and 
subsequent correlations, at further spacings, can be used to establish the correct 
source power. 

The remaining problem is to allocate the source positions. It would seem that this 
can only be achieved satisfactorily by a process of trial and error. However, an 
initial attempt can be made from the examination of the sound pressures and their 
space correlations along the length of the iet boundary. An analysis of the SPL 
distribution in each frequency band w i l l  suggest locations for the dominant sources 
in that band, and space correlations, using two microphones spaced parallel to the 
jet boundary in these regions w i l l  define a minimum separation for consistency with 
the assumption of uncorrelated sources. 
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For an ideally expanded , shock-free flow, the sources can be located with an 
arbitrary reference , although for convenience and simplicity of calculation , it 
i s  recommended that a regular spacing, or one based upon a mathematical pro- 
gression , be used and referenced to the nozzle position. The source spacings 
indicated by the boundary SPL measurements can then be adjusted to coincide with 
these locations. Having fixed the source position, the correlation measurements , 
described above, can then be carried out to define the characteristics of each 
source. 

Current theories which have been reviewed in Section 3.0 w i l l  serve as a useful 
guide in the analysis of the results. Equation 3.16 suggests that for a finite band- 
width analysis based upon the chosen model , the j -th frequency band sound pressure 
level at the point (r,e) relative to the nozzle of an axisymmetric iet (see Figure 30) 
can be expressed in  the form 

Where qj i s  the sound power in the j -th frequency band of the i-th of N sources, 
f, G, and H are far and near field directivity functions and ri, 8; are the coordinates 
of the point (r,e) relative to the i-th source. Comparing equations 4.8 and 4.10 i t  
can be seen that 

and 

(4.1 1) 

Thus P.. and F.. (ei) are defined directly and Gij (e,) and H.. (ei) can be 
derived by an appropriate curve fitting process. 

' J  ' J  'J 

It i s  apparent that the program of data acquisition and analysis for this experiment 
i s  extensive and a high degree of automation i s  highly desirable. At the same time, 
i t  may prove profitable to optimize the ai location of source spectra , i .e. , to mini- 
mize the number of sources per frequency band. This optimization should be included 
as part of an iterative cycle to establish satisfactory source spacings. Upon deter- 
mination of all the parameters in equation 4.10 as functions of if j , and 0; , the 
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equation can be used to compute the frequency band sound pressure contours. A 
comparison of the measured and calculated contours w i l l  indicate the accuracy of 
the model. Any deficiencies may be accounted for by a poor source distribution 
and an improved distribution can be sought. The cycle may then be repeated until 
agreement i s  optimized. 

* 

The preceding paragraphs describe how the constants in a general near field sound 
level prediction equation 4.10 may be experimentally determined. For these results 
to be of any value, they must be correlated with appropriate flow measurements, 
such as those described for use in the MSFC facilities in Reference 52. The most 
important details of the flow, from an acoustic standpoint, are the dimensions of 
the laminar core, the supersonic cone, the jet boundary and the axial velocity 
decay beyond the core tip. From this information, details of the turbulent mixing 
process can be estimated for later use in the establishment of scaling parameters. 

One of the most important conclusions which should stem from these experiments 
at an early stage i s  the resolution of the Mach wave controversy. As discussed 
in Section 3.2.2, substantial Mach wave radiation whould have a negligible near 
field. The values of G;j (e!) and H;j (8;) calculated for the sources in the super- 
sonic flow region w i l l  clearly show whether or not this i s  the case. Also the cor- 
responding far field directivity functions F.. (6.) should exhibit a large peak at 
the Mach angle. 'J I 

If scaling laws are to be established, the experiments must be conducted with a 
large variety of iet configurations, covering a wide range of nozzle size, exhaust 
Mach number and temperature, exhaust gas composition, and including the effects 
of Over and under expansion. The following sequence of configurations i s  recom- 
mended. 

1) ME = 3,air jet, ideal expansion, moderate temperature. 

2) ME = 
temperature. 

3,air jet, conical nozzle, correct area ratio, moderate 

These cases have several objectives: 

a) 

b) 

To verify the proposed methods of analysis and subsequent prediction. 

To investigate the general noise characteristics of shock-free super- 
sonic jets, in particular to resolve the Mach wave problem. The 
moderate temperature should be chosen to give an "Acoustical Mach 
number FiE of around 4. 
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c) To examine shock-turbulence noise. Cases (1) and (2) are run at the 
same conditions, except for the nozzle contours. This should maintain 
a reasonable flow similarity between the two cases except for the pre- 
sence of a shock pattern in the latter, and this should be verified by 
flow measurements and shadow photography. The differences in  the 
two noise fields should then be almost entirely due to shock noise. In 
the presence of shocks it may be necessary to change the source location 
to coincide with the shock patterns, or to introduce new ones. Full 
details of the experiments proposed to conduct cases (1) and (2) are 
given in Appendix C. 

Further configurations are: 

3) M = 3 air jet, over and under expansion. 

4) M = 3 air jet, ambient and high temperatures. 

5) M = 2., M = 2.5, M = 3.5 air jets, moderate temperatures. 

6) 

7) 

8) Rockets. 

M = 

M = 

2, 2.5, 3 helium jets, ambient, moderate and high temperatures. 

3 he1 ium jets over and under expanded. 
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5 .O 
I 

CONClUDlNG REMARKS 

The basic mechanisms of noise generation by supersonic jets and rockets have been 
examined in a review of previous work, both theoretical and experimental. The 
general complexity of the problem has been clearly illustrated and it has been 
shown that although the theories of aerodynamic noise generation certainly provide 
insight into this problem, they cannot be used to predict more than the broadest 
features of the noise field of a given jet. Semi-empirical methods, based on these 
theories, do yield reasonable estimates of the far field noise, but the prediction 
of near field sound pressures i s  more difficult by an order of magnitude. At present, 
there i s  no reliable technique for the prediction of the near field noise of either 
turbojet or rocket engines, operating in even the most ideal conditions; that i s  
exhausting into free, quiescent air. 

This investigqtion has indicated an almost cOmpiete lack of good experimental 
data on the near field characteristics of supersonic jets. Previous near field 
prediction methods have relied on sound pressure measurements made close to the 
iet boundary to provide information regarding the sound power distribution in  the 
iet . The dangers of doing so in the presence of unknown near field complications 
have been iI Iustrated. 

A semi-empirical prediction method i s  proposed, based on the conception that a 
iet exhaust can be adequately represented acoustically by a finite number of 
discrete sound sources. In addition, a suitable experimental program i s  outlined, 
which i s  designed to provide the necessary data for this technique. The first phase 
of this program, planned specifically for the Marshall Space Flight Center jet flow 
facilities, i s  described in detail in Appendix C. It must be emphasized that i t 
i s  vital that these experiments are performed under extremely wel l  controlled con- 
ditions if the results are to be of any value, since the problems of extracting 
accurately the described information from the statistical analytical processes are 
severe. 

It i s  expected that such experiments w i l l  make a significant contribution towards 
the advancement of present knowledge of iet noise generation mechanisms. In 
particular, the basic question of where and how the predominant noise of a rocket 
exhaust is generated should be answered at an early stage in the program. Once 
the viability of the near field noise prediction technique i s  proved, and scaling 
laws have been established, the program can be logically extended to determine the 
effects of practical complications which include multi-nozzle configurations, 
deflected jets and the effects of sound reflection and refraction due to the ground, 
vehicle structure and supporting facilities. 
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APPENDIX A 

SUPERSONIC JET FLOW EQUATIONS 

The total axial momentum in the jet mixing region i s  given by 

mM - .- 2 %  /m pU2 r dr 
r 
0 

where p ,and U are the local free stream mean density and velocity respectively, r i s  
the radius and ro i s  the radius of the potential core. The upper l im i t  i s  infinite to account 
for the assumed exponential nature of the velocity profile. 

It i s  assumed that 

- v2/2 U = U e  m 

and 

(see text) where the subscripts T, m, and o denote total, centerline qnd ambient conditions, 
respectively. 

we can write 
mT 

- q2/2 .5 
lo Putting t = T 

TT/To = 1 + ( t  - 1 ) e  

Now, for a perfect gas p = . TJTT and for an isentropic compression T ‘0 

and a = the total speed of sound T 
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Combining equations (A2), (A4), and (A5) 

But, U2 = 
m 

a =  
m 

M2 a2 
m m  

and again for an adiabatic process in a perfect gas 

- 1/2 
1 + - M 2 )  Y - 1  

2 m 

- a -  
mT 

and therefore, 

-1 
a2 t ~ 2  ( I + ~  Y - 1  ~ 2 )  
0 m m 

Substituting into equations (A7), gives 

2 - 1  

- q2/2 .5 

t M  ( I +  Y-l ~ 2 )  e - q2 
- m 2 m - 

1 + ( t - 1 ) e  

Finally, equations (Al), (A2), (A5), and (A9) can be combined to yield 

1/Y - 1 
( 1 +  -2 Y - 1  M 2 ) - ’  e - q ’ i ]  

X 
m 

o m  - q2/ 2.5 
(A10) 1 + ( t - l ) e  

r = a  r 
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-q2 r 

I + ( t - l ) e  

e . d r  - q2/2 -5 X 

= radius of potential core. rE where a 

In the downstream region a = 0 and this equation can be written 

2 -n 
rl 

drl 
e .' 

I + ( t - l ) e  
X 

-q2/ 2.5 

The radial profile of flow Mach number can be obtained from the perfect gas relationship 

2 

M2 = (q) [i - 

which, upon substitution of equation (A9) becomes 

-1  
7' M2) e-q2 

t M  m (1+ m X 
M2('1) = 

- q2/2 .5 1 + ( t - l ) e  

( I + ~  Y - '  ~ 2 )  
m 

X 

-q2/2.5 1 + ( t - l ) e  

a function of M , t only. 
m 
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Profiles of this expression have been calculated for various values of t and are presented 
in Figure 20. 

It  should be noted that an increase of temperature, which implies an increase in velocity 
for a given Mach number moves the sonic boundary outwards toward the jet boundary. 
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APPENDIX 8 

DERIVATION OF THE SOUND FIELD OF CONVECTED LATERAL 
QUADRUPOLES IN TERMS OF TOTAL SOUND POWER 

Franz gives (equation 91 of Reference 15) the following expression for the sound field of a 
region of lateral quadrupoles, aligned with the x i  and x3 axes, and convected along 
the x3 axis at the convection Mach number, mc 

cos2 8 T,3 T,3' 
1 sin2 e cos2 9 - 

2 4  - M  cos8f  16n a 
C 

F ; 2 =  
0 

+ 4 m; i , 3  t , 3 '  1 2 
6 M ( 1  - A 2 ) c o s 8  

C C 
a 3 ( 1 - f i 2 )  cos2e 

r ( I  - 7i;i cose)2 
- C 

1 - M cos e 
C C 

18Siii ( 1  - M2 )3 cos8 
0 C C C 

a4 9 ( 1  - n2j 8 
+ -  - 1 ( 1  -Fi C O S 8 f  ( 1  - nc cos 

C 
r4 

where = y + - r, and Ti3 = T i 3  (y, t - r/a ). The brackets < > denote 
evaluation aTthe retarded time t - r/a . However tRis equation i s  subject to the correction, 
made by Ffowcs Williams (Reference - 35p to Lighthill's original result (Reference l ) ,  namely 
that a multiplicative factor ( 1  - Mc cos 6 )  must be introduced to account for the increased 
volume of the region of sources whose sound reaches the field point simultaneously. This 
reduces the exponent of ( 1 - Mc cos 9 )  in the common denominator from 6 to 5. 

Following Lighthill (Reference 1, equations 21 and 34b) the total sound power generated by 
the same volume of turbulence is, since the near field components integrate to zero, 
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Now if the volume of interest i s  small, such that r lies outside i t s  geometric near field, 
i .e., at distances large compared with a typical eddy dimension, equations (Bl) and (82) 
can be simplified, for, then the integration can be applied to the terms in T i 3  and i t s  
derivatives alone. For the narrow band of frequencies centered on o, Ta w2 T, and 
i a w 1. Making these substitutions, and combining (Bl)  and (62) leads to: 

1 9  

1+5a2 
C 

(where Ve i s  the eddy volume and P (0) i s  the total power in the given frequency band) 
and then: 

2 
9a2 C (1-m;) 

+ 
( 1  - FJ cos e)2 

C 
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APPENDIX C 

INITIAL EXPERIMENTS TO MEASURE THE NEAR NOISE FlELD OF A SUPERSONIC JET 

Section 4.0 of the main text describes the theory behind the method for a determination of 
the unknown coefficients in the near field sound pressure prediction equation (4.10), which 
IS 

The experimental procedure involves the following steps: 

. Measure the flow properties 

. Define the locations of the N sources along the iet 
axis from boundary pressure correlations 

. Determine p.. 8 Fij (ei), Gij (e.), and H.. (8.) for 
'J I ' J  I 

a l l  if j , and 8; by sound pressure correlation techniques, 
where i denotes the i-th source, j the j - th frequency 
band and 8, i s  the angle from the iet axis 

Using the calculated coefficients, compute the sound pressure 
level contours according to equation (4.10), and compare w i th  
measurements to check results If necessary, redefine source 
locations and repeat Item 3. 

f th 

(4.10) 

Of these steps, the third is the most extensive and Figure 31 shows a sketch d 
instrumentation layout for acquisition of the sound pressure signals required for correlation. 
A particular source location i s  shown on the iet axis and a series of microphones mounted 
upon a boom are aligned with the source in the horizontal plane. The boom can be rotated, 
in the horizontal plane, about an axis through the source. The angle between the boom and 
the jet axis defines the angle 8. . 

. .  

I 

The signals from all microphones are to be recorded simultaneously and the number of micro- 
phones is, therefore, governed by the number of data channels available. However, a 
minimum of six i s  recommended and provision should be made to attach them at arbitrary 
positions on the boom up to a maximum of 30 diameters from i t s  pivot. It i s  further recom- 
mended that the boom is  provided with a constant speed drive motor to rotate i t  through the 
full range of e;, within the duration of one iet run. If the angular position 8; i s  also 
recorded on a further channel of information and the rotation i s  sufficiently slow, a specified 
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record sample can be regarded as applying to a fixed value of e;, only. This provision w i l l  
considerably expedite the experimental procedure. 

As shown in Figure 31, the boom pivot i s  mounted on a saddle, which is  free to travel on the , 

rail running below, and parallel to the jet axis. If this slide i s  suitably scaled, the boom 
pivot can be accurately located at any point under the iet axis. However, the boom rail 
should have latitude in the horizontal plane so that it can be aligned with the iet boundary. 
Then, if the boom is arranged to lock at the 90-degree position, an auxiliary traverse can 
be mounted upon it, which holds one fixed and one traveling microphone. This equipment 
may then also be used to perform the space correlations parallel to the iet boundary which 
are required to aid the specification of the source distribution. 

It i s  recognized that this system could cause serious sound reflection problems and, after 
installation of the facility, i t  wil l  be essential to investigate and minimize these reflections. 
It i s  suggested that a l l  surfaces in the immediate vicinity of the rig, including the boom, 
traversing gear, and microphone bodies, be covered, or wrapped, in sound absorbent material 
such as cotton blanketing. A loudspeaker should thcn be installed in the approximate vicinity 
of the iet nozzle to generate discrete frequency sound of constant level, scanning the frequency 
range of interest. For various boom positions, the output levels from each of the microphones 
can be compared with that from a reference microphone near the speaker. Reflections will 
manifest themselves by continuously modifying the sound level at the affected microphone as 
the frequency changes, and steps can then be taken to find and remove the source of the 
reflection. 

Since the signals from al l  microphones are to be correlated, i t  is of course essential that al l  
microphones and their 'associated recording channels are phase matched throughout,. 

When the facility i s  checked out, the measurement program can proceed, and the following 
sequence i s  proposed. 

1) Install a small, ideally expanded Mach 3.0 nozzle and run, at the design 
pressure ratio, at a temperature which w i l l  give an exhaust velocity around 
4 times the ambient speed of sound. Check that the flow is  shock free by 
taking shadowgraphs. Ensure repeatability by installing a monitoring static 
pressure transducer in the nozzle expansion chamber wall close to the exit 
plane. 

2) Measure radial velocity and temperature profiles at several stations along 
the jet axis in order to define the dimensions of the laminar core, the 
supersonic core and the jet boundary. This information can be used to 
align the boom rail parallel to the jet boundary. 
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3) Traverse the jet boundary, with the microphone located as near to i t  as 
possible, recording the sound pressure level. This signal may then be 
analyzed in octave or third-octave bandwidths to determine the approxi- 
mate distribution of the sound flow along the iet in each frequency band. 
This w i l l  indicate suitable source locations for each frequency band. 

4) Using a fixed microphone at a selected station along the boundary, cross 
correlate i t s  output with that of a second microphone spaced at a number 
of intervals along the auxiliary traverse, parallel to the iet boundary. 
Cross correlations in the required frequency band wi l l  indicate the extent 
of an equivalent correlated source region. Repetition of this procedure at 
various stations along the jet w i l l  enable the source spacings to be optimized 
and an approximate filter band spectrum allocated to each. It i s  recommended 
that the source spacings be regular, or in the form of a convenient mathematical 
progression, in order to simplify the analysis and the later use of the prediction 
method. 

5) Align the boom rail parallel to the jet axis as determined by 2). For each 
source, a suitable microphone spacing along the boom can be determined 
from i t s  approximate spectrum. The near field in each frequency band can 
be expected to extend for a few wavelengths and the outboard microphone 
should be outside the near field of the lowest expected frequency component. 
The inboard microphone should be located to avoid impact with the ie t  flow 
at the smallest boom angle envisaged. It may prove necessary to adjust the 
microphone positions at the extreme boom angles to avoid this occurrence. 
It is recommended that 8; be traversed in the range of 25 degrees through 
155 degrees to the iet axis. The intermediate microphones should be arranged 
to give a reasonable coverage between those at the two ends, being more 
closely spaced towards the inboard end. 

The boom i s  now rotated through the range of ei at a steady rate, simul- 
taneously recording the signals from al  I microphones. The signal from the 
inboard microphone is  then cross correlated with that from each of the other 
microphones in turn, for a number of discrete values of 8; (assuming that a 
certain duration of the signal can be extracted, which approximates the 
values for a fixed value of €Ii), and at various time delays. These correlations 
are used to determine the source coefficients P.. , F.. (e.), G.. (e.), and 

IJ 11 I IJ I 

Hij (8.) according to the methods of Section 4.0 of the main text. 
I 

The actual microphone spacings along the boom and the filter bandwidths can 
only be determined by experience. The microphone spacing must be chosen 
to meet the requirement defined in Section 4.0 of the text. Firstly, the 
"boundaries" of the near f ie ld  must be known before the outboard microphones 
can be mounted in the far f ield. Secondly, i t  may be necessary to adjust the 
position of the outer microphone to acquire further data, i f  the near and far 
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fieids are found to be substantially correlated. Thirdly, the spacings of the 
intermediate microphones may need adjustment to provide satisfactory points 
for the curve fitting processes involved in the extraction of G (ei) and 

Hij (8;). The filter bandwidth should be as broad as possible, preferably 

octave band, but third octave analysis may prove necessary to achieve the 
required degree of resolution of the cross-covariagram. In this case, i t wi l l  
quite probably be satisfactory to perform analyses in alternate, or every third 
band, estimating intermediate results by interpolation. 

I 

i j  

The entire procedure must, of course, be repeated for each source location. 

6) Use the calculated values of the coefficients to compute the frequency band 
noise contours for comparison with measurements. Prior to -this, some degree 
of smoothing of the coefficients could prove advantageous to ensure that, for 
example, Fij (e.), Gij (ei), and H.. (6.) are continuous functions of 8.. 

I 11 I I 

If the agreement between measured and computed SPL's i s  deficient, then 
reasons for the deficiencies must be analyzed. This may lead to definition 
of an improved source distribution, in which case, operation (5) and (6) 
must be repeated. 

7) Replace the ideally expanded nozzle by a conical nozzle of the same area 
ratio and run at the previous values of the pressure ratio and total temperature. 
The flow wi l l  now contain the cellular shock structure which i s  characteristic 
of supersonic jets but in other respects the flow should remain basically the 
same as that from the ideal nozzle. 

Take shadowgraphs of the flow to determine the location of the visible shocks 
and extrapolate the results to the region where they are masked by the sur- 
rounding turbulence. 

8 )  Measure velocity and temperature profiles at various stations, taking due 
account of the possible effects of the shocks. Determine the sonic point 
as accurately as possible by traversing the probe along the jet axis towards 
the nozzle until the critical pressure ratio i s  measured. 

9)  Check that the likely shock noise sources coincide with or fall close to 
source locations in the previously determined distribution. If not, it may 
be necessary to make some adjustments or insert additional sources. 

10) Repeat the procedure defined by steps (3) through (6). 
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Figure 2. Shock Free Supersonic Flow 
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Figure 3.  Calculated Flow Contours for Constant Density Axisymmetric Jet. 
From Reference 17. 
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Figure 4. Variation of Core Length with Exit Mach Number. 
(After Eldred et  al . Reference 17 .) 
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Figure 5. Variation of l!/b with Exit Mach Number (From Eldred eta l .  Reference 17.) 
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Figure 9 .  Development of Shock Patterns. 
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Figure 11. Development of Shock Pattern with Nozzle Exit Pressure, Design 
Mach Number = 2.47. From top to bottom; pE/p 
0.747, 1.0, 1.53, 1.98. 
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Figure 12. Width of Primary Cell; Empirical Relationships from Love eta1 . 
(Reference 31) 
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Figure 15. Similarity of Radial Velocity Profiles in Jet Mixing Region 
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Figure 21a. Relationship Between Cartesian and Polar Coordinates. 
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Figure 21b. Near Field Amplification due to X I ,  x3 Lateral Quadrupoles (k r = 0.25). 
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Figure 22. Overall Jet Sound Power Per Unit Nozzle Area 
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Figure 23. Jet Noise Directivity 

(b) Measured Directivity in Selected Octave Bands (From Lee etal). 
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Figure 25. Location of Maximum Sound Pressure Level in 1/3 
Octave Frequency &In& as Function of Modified 
Strouhal Number, From Reference 17. 

Near Field Effects I- ZI 

Typical Spectra Measured 
at Various Axial Locations 

4 

increasing x 

f 
Figure 26. Modification of Apparent Spectrum by Near Field Effects. 
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Figure 28. Effects of Eddy Convection on Emission Volume and 
Emission Time Differences. (Reference 36) 
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Figure 31. Schematic of Prdposed rig for Near Field Correlation Experiments. 

90 NASA-Langley, 1967 - 23 C~-857 


